pandas.plotting.radviz#
- pandas.plotting.radviz(frame, class_column, ax=None, color=None, colormap=None, **kwds)[source]#
- Plot a multidimensional dataset in 2D. - Each Series in the DataFrame is represented as a evenly distributed slice on a circle. Each data point is rendered in the circle according to the value on each Series. Highly correlated Series in the DataFrame are placed closer on the unit circle. - RadViz allow to project a N-dimensional data set into a 2D space where the influence of each dimension can be interpreted as a balance between the influence of all dimensions. - More info available at the original article describing RadViz. - Parameters
- frameDataFrame
- Object holding the data. 
- class_columnstr
- Column name containing the name of the data point category. 
- axmatplotlib.axes.Axes, optional
- A plot instance to which to add the information. 
- colorlist[str] or tuple[str], optional
- Assign a color to each category. Example: [‘blue’, ‘green’]. 
- colormapstr or matplotlib.colors.Colormap, default None
- Colormap to select colors from. If string, load colormap with that name from matplotlib. 
- **kwds
- Options to pass to matplotlib scatter plotting method. 
 
- Returns
- class:matplotlib.axes.Axes
 
 - See also - plotting.andrews_curves
- Plot clustering visualization. 
 - Examples - >>> df = pd.DataFrame( ... { ... 'SepalLength': [6.5, 7.7, 5.1, 5.8, 7.6, 5.0, 5.4, 4.6, 6.7, 4.6], ... 'SepalWidth': [3.0, 3.8, 3.8, 2.7, 3.0, 2.3, 3.0, 3.2, 3.3, 3.6], ... 'PetalLength': [5.5, 6.7, 1.9, 5.1, 6.6, 3.3, 4.5, 1.4, 5.7, 1.0], ... 'PetalWidth': [1.8, 2.2, 0.4, 1.9, 2.1, 1.0, 1.5, 0.2, 2.1, 0.2], ... 'Category': [ ... 'virginica', ... 'virginica', ... 'setosa', ... 'virginica', ... 'virginica', ... 'versicolor', ... 'versicolor', ... 'setosa', ... 'virginica', ... 'setosa' ... ] ... } ... ) >>> pd.plotting.radviz(df, 'Category') <AxesSubplot: xlabel='y(t)', ylabel='y(t + 1)'> 