pandas.io.formats.style.Styler.apply#
- Styler.apply(func, axis=0, subset=None, **kwargs)[source]#
Apply a CSS-styling function column-wise, row-wise, or table-wise.
Updates the HTML representation with the result.
- Parameters
- funcfunction
func
should take a Series ifaxis
in [0,1] and return a list-like object of same length, or a Series, not necessarily of same length, with valid index labels consideringsubset
.func
should take a DataFrame ifaxis
isNone
and return either an ndarray with the same shape or a DataFrame, not necessarily of the same shape, with valid index and columns labels consideringsubset
.Changed in version 1.3.0.
Changed in version 1.4.0.
- axis{0 or ‘index’, 1 or ‘columns’, None}, default 0
Apply to each column (
axis=0
or'index'
), to each row (axis=1
or'columns'
), or to the entire DataFrame at once withaxis=None
.- subsetlabel, array-like, IndexSlice, optional
A valid 2d input to DataFrame.loc[<subset>], or, in the case of a 1d input or single key, to DataFrame.loc[:, <subset>] where the columns are prioritised, to limit
data
to before applying the function.- **kwargsdict
Pass along to
func
.
- Returns
- Styler
See also
Styler.applymap_index
Apply a CSS-styling function to headers elementwise.
Styler.apply_index
Apply a CSS-styling function to headers level-wise.
Styler.applymap
Apply a CSS-styling function elementwise.
Notes
The elements of the output of
func
should be CSS styles as strings, in the format ‘attribute: value; attribute2: value2; …’ or, if nothing is to be applied to that element, an empty string orNone
.This is similar to
DataFrame.apply
, except thataxis=None
applies the function to the entire DataFrame at once, rather than column-wise or row-wise.Examples
>>> def highlight_max(x, color): ... return np.where(x == np.nanmax(x.to_numpy()), f"color: {color};", None) >>> df = pd.DataFrame(np.random.randn(5, 2), columns=["A", "B"]) >>> df.style.apply(highlight_max, color='red') >>> df.style.apply(highlight_max, color='blue', axis=1) >>> df.style.apply(highlight_max, color='green', axis=None)
Using
subset
to restrict application to a single column or multiple columns>>> df.style.apply(highlight_max, color='red', subset="A") ... >>> df.style.apply(highlight_max, color='red', subset=["A", "B"]) ...
Using a 2d input to
subset
to select rows in addition to columns>>> df.style.apply(highlight_max, color='red', subset=([0,1,2], slice(None))) ... >>> df.style.apply(highlight_max, color='red', subset=(slice(0,5,2), "A")) ...
Using a function which returns a Series / DataFrame of unequal length but containing valid index labels
>>> df = pd.DataFrame([[1, 2], [3, 4], [4, 6]], index=["A1", "A2", "Total"]) >>> total_style = pd.Series("font-weight: bold;", index=["Total"]) >>> df.style.apply(lambda s: total_style)
See Table Visualization user guide for more details.