pandas.arrays.FloatingArray#

class pandas.arrays.FloatingArray(values, mask, copy=False)[source]#

Array of floating (optional missing) values.

New in version 1.2.0.

Warning

FloatingArray is currently experimental, and its API or internal implementation may change without warning. Especially the behaviour regarding NaN (distinct from NA missing values) is subject to change.

We represent a FloatingArray with 2 numpy arrays:

  • data: contains a numpy float array of the appropriate dtype

  • mask: a boolean array holding a mask on the data, True is missing

To construct an FloatingArray from generic array-like input, use pandas.array() with one of the float dtypes (see examples).

See Nullable integer data type for more.

Parameters:
valuesnumpy.ndarray

A 1-d float-dtype array.

masknumpy.ndarray

A 1-d boolean-dtype array indicating missing values.

copybool, default False

Whether to copy the values and mask.

Returns:
FloatingArray

Examples

Create an FloatingArray with pandas.array():

>>> pd.array([0.1, None, 0.3], dtype=pd.Float32Dtype())
<FloatingArray>
[0.1, <NA>, 0.3]
Length: 3, dtype: Float32

String aliases for the dtypes are also available. They are capitalized.

>>> pd.array([0.1, None, 0.3], dtype="Float32")
<FloatingArray>
[0.1, <NA>, 0.3]
Length: 3, dtype: Float32

Attributes

None

Methods

None