pandas.DataFrame.__add__#
- DataFrame.__add__(other)[source]#
Get Addition of DataFrame and other, column-wise.
Equivalent to
DataFrame.add(other).- Parameters:
- otherscalar, sequence, Series, dict or DataFrame
Object to be added to the DataFrame.
- Returns:
- DataFrame
The result of adding
otherto DataFrame.
See also
DataFrame.addAdd a DataFrame and another object, with option for index- or column-oriented addition.
Examples
>>> df = pd.DataFrame({'height': [1.5, 2.6], 'weight': [500, 800]}, ... index=['elk', 'moose']) >>> df height weight elk 1.5 500 moose 2.6 800
Adding a scalar affects all rows and columns.
>>> df[['height', 'weight']] + 1.5 height weight elk 3.0 501.5 moose 4.1 801.5
Each element of a list is added to a column of the DataFrame, in order.
>>> df[['height', 'weight']] + [0.5, 1.5] height weight elk 2.0 501.5 moose 3.1 801.5
Keys of a dictionary are aligned to the DataFrame, based on column names; each value in the dictionary is added to the corresponding column.
>>> df[['height', 'weight']] + {'height': 0.5, 'weight': 1.5} height weight elk 2.0 501.5 moose 3.1 801.5
When other is a
Series, the index of other is aligned with the columns of the DataFrame.>>> s1 = pd.Series([0.5, 1.5], index=['weight', 'height']) >>> df[['height', 'weight']] + s1 height weight elk 3.0 500.5 moose 4.1 800.5
Even when the index of other is the same as the index of the DataFrame, the
Serieswill not be reoriented. If index-wise alignment is desired,DataFrame.add()should be used with axis=’index’.>>> s2 = pd.Series([0.5, 1.5], index=['elk', 'moose']) >>> df[['height', 'weight']] + s2 elk height moose weight elk NaN NaN NaN NaN moose NaN NaN NaN NaN
>>> df[['height', 'weight']].add(s2, axis='index') height weight elk 2.0 500.5 moose 4.1 801.5
When other is a
DataFrame, both columns names and the index are aligned.>>> other = pd.DataFrame({'height': [0.2, 0.4, 0.6]}, ... index=['elk', 'moose', 'deer']) >>> df[['height', 'weight']] + other height weight deer NaN NaN elk 1.7 NaN moose 3.0 NaN