pandas.DataFrame.cumsum#
- DataFrame.cumsum(axis=None, skipna=True, *args, **kwargs)[source]#
- Return cumulative sum over a DataFrame or Series axis. - Returns a DataFrame or Series of the same size containing the cumulative sum. - Parameters:
- axis{0 or ‘index’, 1 or ‘columns’}, default 0
- The index or the name of the axis. 0 is equivalent to None or ‘index’. For Series this parameter is unused and defaults to 0. 
- skipnabool, default True
- Exclude NA/null values. If an entire row/column is NA, the result will be NA. 
- *args, **kwargs
- Additional keywords have no effect but might be accepted for compatibility with NumPy. 
 
- Returns:
- Series or DataFrame
- Return cumulative sum of Series or DataFrame. 
 
 - See also - core.window.expanding.Expanding.sum
- Similar functionality but ignores - NaNvalues.
- DataFrame.sum
- Return the sum over DataFrame axis. 
- DataFrame.cummax
- Return cumulative maximum over DataFrame axis. 
- DataFrame.cummin
- Return cumulative minimum over DataFrame axis. 
- DataFrame.cumsum
- Return cumulative sum over DataFrame axis. 
- DataFrame.cumprod
- Return cumulative product over DataFrame axis. 
 - Examples - Series - >>> s = pd.Series([2, np.nan, 5, -1, 0]) >>> s 0 2.0 1 NaN 2 5.0 3 -1.0 4 0.0 dtype: float64 - By default, NA values are ignored. - >>> s.cumsum() 0 2.0 1 NaN 2 7.0 3 6.0 4 6.0 dtype: float64 - To include NA values in the operation, use - skipna=False- >>> s.cumsum(skipna=False) 0 2.0 1 NaN 2 NaN 3 NaN 4 NaN dtype: float64 - DataFrame - >>> df = pd.DataFrame([[2.0, 1.0], ... [3.0, np.nan], ... [1.0, 0.0]], ... columns=list('AB')) >>> df A B 0 2.0 1.0 1 3.0 NaN 2 1.0 0.0 - By default, iterates over rows and finds the sum in each column. This is equivalent to - axis=Noneor- axis='index'.- >>> df.cumsum() A B 0 2.0 1.0 1 5.0 NaN 2 6.0 1.0 - To iterate over columns and find the sum in each row, use - axis=1- >>> df.cumsum(axis=1) A B 0 2.0 3.0 1 3.0 NaN 2 1.0 1.0