pandas.DataFrame.idxmax#
- DataFrame.idxmax(axis=0, skipna=True, numeric_only=False)[source]#
- Return index of first occurrence of maximum over requested axis. - NA/null values are excluded. - Parameters:
- axis{0 or ‘index’, 1 or ‘columns’}, default 0
- The axis to use. 0 or ‘index’ for row-wise, 1 or ‘columns’ for column-wise. 
- skipnabool, default True
- Exclude NA/null values. If an entire row/column is NA, the result will be NA. 
- numeric_onlybool, default False
- Include only float, int or boolean data. - Added in version 1.5.0. 
 
- Returns:
- Series
- Indexes of maxima along the specified axis. 
 
- Raises:
- ValueError
- If the row/column is empty 
 
 
 - See also - Series.idxmax
- Return index of the maximum element. 
 - Notes - This method is the DataFrame version of - ndarray.argmax.- Examples - Consider a dataset containing food consumption in Argentina. - >>> df = pd.DataFrame({'consumption': [10.51, 103.11, 55.48], ... 'co2_emissions': [37.2, 19.66, 1712]}, ... index=['Pork', 'Wheat Products', 'Beef']) - >>> df consumption co2_emissions Pork 10.51 37.20 Wheat Products 103.11 19.66 Beef 55.48 1712.00 - By default, it returns the index for the maximum value in each column. - >>> df.idxmax() consumption Wheat Products co2_emissions Beef dtype: object - To return the index for the maximum value in each row, use - axis="columns".- >>> df.idxmax(axis="columns") Pork co2_emissions Wheat Products consumption Beef co2_emissions dtype: object