pandas.arrays.FloatingArray#
- class pandas.arrays.FloatingArray(values, mask, copy=False)[source]#
- Array of floating (optional missing) values. - Warning - FloatingArray is currently experimental, and its API or internal implementation may change without warning. Especially the behaviour regarding NaN (distinct from NA missing values) is subject to change. - We represent a FloatingArray with 2 numpy arrays: - data: contains a numpy float array of the appropriate dtype 
- mask: a boolean array holding a mask on the data, True is missing 
 - To construct an FloatingArray from generic array-like input, use - pandas.array()with one of the float dtypes (see examples).- See Nullable integer data type for more. - Parameters:
- valuesnumpy.ndarray
- A 1-d float-dtype array. 
- masknumpy.ndarray
- A 1-d boolean-dtype array indicating missing values. 
- copybool, default False
- Whether to copy the values and mask. 
 
 - Attributes - None - Methods - None - Returns:
- FloatingArray
 
 - Examples - Create an FloatingArray with - pandas.array():- >>> pd.array([0.1, None, 0.3], dtype=pd.Float32Dtype()) <FloatingArray> [0.1, <NA>, 0.3] Length: 3, dtype: Float32 - String aliases for the dtypes are also available. They are capitalized. - >>> pd.array([0.1, None, 0.3], dtype="Float32") <FloatingArray> [0.1, <NA>, 0.3] Length: 3, dtype: Float32