pandas.arrays.SparseArray#
- class pandas.arrays.SparseArray(data, sparse_index=None, fill_value=None, kind='integer', dtype=None, copy=False)[source]#
- An ExtensionArray for storing sparse data. - Parameters:
- dataarray-like or scalar
- A dense array of values to store in the SparseArray. This may contain fill_value. 
- sparse_indexSparseIndex, optional
- fill_valuescalar, optional
- Elements in data that are - fill_valueare not stored in the SparseArray. For memory savings, this should be the most common value in data. By default, fill_value depends on the dtype of data:- data.dtype - na_value - float - np.nan- int - 0- bool - False - datetime64 - pd.NaT- timedelta64 - pd.NaT- The fill value is potentially specified in three ways. In order of precedence, these are - The fill_value argument 
- dtype.fill_valueif fill_value is None and dtype is a- SparseDtype
- data.dtype.fill_valueif fill_value is None and dtype is not a- SparseDtypeand data is a- SparseArray.
 
- kindstr
- Can be ‘integer’ or ‘block’, default is ‘integer’. The type of storage for sparse locations. - ‘block’: Stores a block and block_length for each contiguous span of sparse values. This is best when sparse data tends to be clumped together, with large regions of - fill-valuevalues between sparse values.
- ‘integer’: uses an integer to store the location of each sparse value. 
 
- dtypenp.dtype or SparseDtype, optional
- The dtype to use for the SparseArray. For numpy dtypes, this determines the dtype of - self.sp_values. For SparseDtype, this determines- self.sp_valuesand- self.fill_value.
- copybool, default False
- Whether to explicitly copy the incoming data array. 
 
 - Attributes - None - Methods - None - Examples - >>> from pandas.arrays import SparseArray >>> arr = SparseArray([0, 0, 1, 2]) >>> arr [0, 0, 1, 2] Fill: 0 IntIndex Indices: array([2, 3], dtype=int32)