pandas.io.formats.style.Styler.map_index#
- Styler.map_index(func, axis=0, level=None, **kwargs)[source]#
- Apply a CSS-styling function to the index or column headers, elementwise. - Updates the HTML representation with the result. - Added in version 1.4.0. - Added in version 2.1.0: Styler.applymap_index was deprecated and renamed to Styler.map_index. - Parameters:
- funcfunction
- funcshould take a scalar and return a string.
- axis{0, 1, “index”, “columns”}
- The headers over which to apply the function. 
- levelint, str, list, optional
- If index is MultiIndex the level(s) over which to apply the function. 
- **kwargsdict
- Pass along to - func.
 
- Returns:
- Styler
 
 - See also - Styler.apply_index
- Apply a CSS-styling function to headers level-wise. 
- Styler.apply
- Apply a CSS-styling function column-wise, row-wise, or table-wise. 
- Styler.map
- Apply a CSS-styling function elementwise. 
 - Notes - Each input to - funcwill be an index value, if an Index, or a level value of a MultiIndex. The output of- funcshould be CSS styles as a string, in the format ‘attribute: value; attribute2: value2; …’ or, if nothing is to be applied to that element, an empty string or- None.- Examples - Basic usage to conditionally highlight values in the index. - >>> df = pd.DataFrame([[1,2], [3,4]], index=["A", "B"]) >>> def color_b(s): ... return "background-color: yellow;" if v == "B" else None >>> df.style.map_index(color_b)   - Selectively applying to specific levels of MultiIndex columns. - >>> midx = pd.MultiIndex.from_product([['ix', 'jy'], [0, 1], ['x3', 'z4']]) >>> df = pd.DataFrame([np.arange(8)], columns=midx) >>> def highlight_x(v): ... return "background-color: yellow;" if "x" in v else None >>> df.style.map_index(highlight_x, axis="columns", level=[0, 2]) ... 