pandas.io.formats.style.Styler.text_gradient#
- Styler.text_gradient(cmap='PuBu', low=0, high=0, axis=0, subset=None, vmin=None, vmax=None, gmap=None)[source]#
- Color the text in a gradient style. - The text color is determined according to the data in each column, row or frame, or by a given gradient map. Requires matplotlib. - Parameters:
- cmapstr or colormap
- Matplotlib colormap. 
- lowfloat
- Compress the color range at the low end. This is a multiple of the data range to extend below the minimum; good values usually in [0, 1], defaults to 0. 
- highfloat
- Compress the color range at the high end. This is a multiple of the data range to extend above the maximum; good values usually in [0, 1], defaults to 0. 
- axis{0, 1, “index”, “columns”, None}, default 0
- Apply to each column ( - axis=0or- 'index'), to each row (- axis=1or- 'columns'), or to the entire DataFrame at once with- axis=None.
- subsetlabel, array-like, IndexSlice, optional
- A valid 2d input to DataFrame.loc[<subset>], or, in the case of a 1d input or single key, to DataFrame.loc[:, <subset>] where the columns are prioritised, to limit - datato before applying the function.
- vminfloat, optional
- Minimum data value that corresponds to colormap minimum value. If not specified the minimum value of the data (or gmap) will be used. 
- vmaxfloat, optional
- Maximum data value that corresponds to colormap maximum value. If not specified the maximum value of the data (or gmap) will be used. 
- gmaparray-like, optional
- Gradient map for determining the text colors. If not supplied will use the underlying data from rows, columns or frame. If given as an ndarray or list-like must be an identical shape to the underlying data considering - axisand- subset. If given as DataFrame or Series must have same index and column labels considering- axisand- subset. If supplied,- vminand- vmaxshould be given relative to this gradient map.- Added in version 1.3.0. 
 
- Returns:
- Styler
 
 - See also - Styler.background_gradient
- Color the background in a gradient style. 
 - Notes - When using - lowand- highthe range of the gradient, given by the data if- gmapis not given or by- gmap, is extended at the low end effectively by map.min - low * map.range and at the high end by map.max + high * map.range before the colors are normalized and determined.- If combining with - vminand- vmaxthe map.min, map.max and map.range are replaced by values according to the values derived from- vminand- vmax.- This method will preselect numeric columns and ignore non-numeric columns unless a - gmapis supplied in which case no preselection occurs.- Examples - >>> df = pd.DataFrame(columns=["City", "Temp (c)", "Rain (mm)", "Wind (m/s)"], ... data=[["Stockholm", 21.6, 5.0, 3.2], ... ["Oslo", 22.4, 13.3, 3.1], ... ["Copenhagen", 24.5, 0.0, 6.7]]) - Shading the values column-wise, with - axis=0, preselecting numeric columns- >>> df.style.text_gradient(axis=0)   - Shading all values collectively using - axis=None- >>> df.style.text_gradient(axis=None)   - Compress the color map from the both - lowand- highends- >>> df.style.text_gradient(axis=None, low=0.75, high=1.0)   - Manually setting - vminand- vmaxgradient thresholds- >>> df.style.text_gradient(axis=None, vmin=6.7, vmax=21.6)   - Setting a - gmapand applying to all columns with another- cmap- >>> df.style.text_gradient(axis=0, gmap=df['Temp (c)'], cmap='YlOrRd') ...   - Setting the gradient map for a dataframe (i.e. - axis=None), we need to explicitly state- subsetto match the- gmapshape- >>> gmap = np.array([[1,2,3], [2,3,4], [3,4,5]]) >>> df.style.text_gradient(axis=None, gmap=gmap, ... cmap='YlOrRd', subset=['Temp (c)', 'Rain (mm)', 'Wind (m/s)'] ... ) 