pandas.plotting.scatter_matrix#
- pandas.plotting.scatter_matrix(frame, alpha=0.5, figsize=None, ax=None, grid=False, diagonal='hist', marker='.', density_kwds=None, hist_kwds=None, range_padding=0.05, **kwargs)[source]#
- Draw a matrix of scatter plots. - Parameters:
- frameDataFrame
- alphafloat, optional
- Amount of transparency applied. 
- figsize(float,float), optional
- A tuple (width, height) in inches. 
- axMatplotlib axis object, optional
- gridbool, optional
- Setting this to True will show the grid. 
- diagonal{‘hist’, ‘kde’}
- Pick between ‘kde’ and ‘hist’ for either Kernel Density Estimation or Histogram plot in the diagonal. 
- markerstr, optional
- Matplotlib marker type, default ‘.’. 
- density_kwdskeywords
- Keyword arguments to be passed to kernel density estimate plot. 
- hist_kwdskeywords
- Keyword arguments to be passed to hist function. 
- range_paddingfloat, default 0.05
- Relative extension of axis range in x and y with respect to (x_max - x_min) or (y_max - y_min). 
- **kwargs
- Keyword arguments to be passed to scatter function. 
 
- Returns:
- numpy.ndarray
- A matrix of scatter plots. 
 
 - Examples - >>> df = pd.DataFrame(np.random.randn(1000, 4), columns=['A','B','C','D']) >>> pd.plotting.scatter_matrix(df, alpha=0.2) array([[<Axes: xlabel='A', ylabel='A'>, <Axes: xlabel='B', ylabel='A'>, <Axes: xlabel='C', ylabel='A'>, <Axes: xlabel='D', ylabel='A'>], [<Axes: xlabel='A', ylabel='B'>, <Axes: xlabel='B', ylabel='B'>, <Axes: xlabel='C', ylabel='B'>, <Axes: xlabel='D', ylabel='B'>], [<Axes: xlabel='A', ylabel='C'>, <Axes: xlabel='B', ylabel='C'>, <Axes: xlabel='C', ylabel='C'>, <Axes: xlabel='D', ylabel='C'>], [<Axes: xlabel='A', ylabel='D'>, <Axes: xlabel='B', ylabel='D'>, <Axes: xlabel='C', ylabel='D'>, <Axes: xlabel='D', ylabel='D'>]], dtype=object) 