pandas.qcut¶
- pandas.qcut(x, q, labels=None, retbins=False, precision=3)¶
Quantile-based discretization function. Discretize variable into equal-sized buckets based on rank or based on sample quantiles. For example 1000 values for 10 quantiles would produce a Categorical object indicating quantile membership for each data point.
Parameters : x : ndarray or Series
q : integer or array of quantiles
Number of quantiles. 10 for deciles, 4 for quartiles, etc. Alternately array of quantiles, e.g. [0, .25, .5, .75, 1.] for quartiles
labels : array or boolean, default None
Labels to use for bin edges, or False to return integer bin labels
retbins : bool, optional
Whether to return the bins or not. Can be useful if bins is given as a scalar.
precision : int
The precision at which to store and display the bins labels
Returns : cat : Categorical
Notes
Out of bounds values will be NA in the resulting Categorical object