pandas.DataFrame.plot

DataFrame.plot(data, x=None, y=None, kind='line', ax=None, subplots=False, sharex=None, sharey=False, layout=None, figsize=None, use_index=True, title=None, grid=None, legend=True, style=None, logx=False, logy=False, loglog=False, xticks=None, yticks=None, xlim=None, ylim=None, rot=None, fontsize=None, colormap=None, table=False, yerr=None, xerr=None, secondary_y=False, sort_columns=False, **kwds)

Make plots of DataFrame using matplotlib / pylab.

Parameters:

data : DataFrame

x : label or position, default None

y : label or position, default None

Allows plotting of one column versus another

kind : str

  • ‘line’ : line plot (default)
  • ‘bar’ : vertical bar plot
  • ‘barh’ : horizontal bar plot
  • ‘hist’ : histogram
  • ‘box’ : boxplot
  • ‘kde’ : Kernel Density Estimation plot
  • ‘density’ : same as ‘kde’
  • ‘area’ : area plot
  • ‘pie’ : pie plot
  • ‘scatter’ : scatter plot
  • ‘hexbin’ : hexbin plot

ax : matplotlib axes object, default None

subplots : boolean, default False

Make separate subplots for each column

sharex : boolean, default True if ax is None else False

In case subplots=True, share x axis and set some x axis labels to invisible; defaults to True if ax is None otherwise False if an ax is passed in; Be aware, that passing in both an ax and sharex=True will alter all x axis labels for all axis in a figure!

sharey : boolean, default False

In case subplots=True, share y axis and set some y axis labels to invisible

layout : tuple (optional)

(rows, columns) for the layout of subplots

figsize : a tuple (width, height) in inches

use_index : boolean, default True

Use index as ticks for x axis

title : string

Title to use for the plot

grid : boolean, default None (matlab style default)

Axis grid lines

legend : False/True/’reverse’

Place legend on axis subplots

style : list or dict

matplotlib line style per column

logx : boolean, default False

Use log scaling on x axis

logy : boolean, default False

Use log scaling on y axis

loglog : boolean, default False

Use log scaling on both x and y axes

xticks : sequence

Values to use for the xticks

yticks : sequence

Values to use for the yticks

xlim : 2-tuple/list

ylim : 2-tuple/list

rot : int, default None

Rotation for ticks (xticks for vertical, yticks for horizontal plots)

fontsize : int, default None

Font size for xticks and yticks

colormap : str or matplotlib colormap object, default None

Colormap to select colors from. If string, load colormap with that name from matplotlib.

colorbar : boolean, optional

If True, plot colorbar (only relevant for ‘scatter’ and ‘hexbin’ plots)

position : float

Specify relative alignments for bar plot layout. From 0 (left/bottom-end) to 1 (right/top-end). Default is 0.5 (center)

layout : tuple (optional)

(rows, columns) for the layout of the plot

table : boolean, Series or DataFrame, default False

If True, draw a table using the data in the DataFrame and the data will be transposed to meet matplotlib’s default layout. If a Series or DataFrame is passed, use passed data to draw a table.

yerr : DataFrame, Series, array-like, dict and str

See Plotting with Error Bars for detail.

xerr : same types as yerr.

stacked : boolean, default False in line and

bar plots, and True in area plot. If True, create stacked plot.

sort_columns : boolean, default False

Sort column names to determine plot ordering

secondary_y : boolean or sequence, default False

Whether to plot on the secondary y-axis If a list/tuple, which columns to plot on secondary y-axis

mark_right : boolean, default True

When using a secondary_y axis, automatically mark the column labels with “(right)” in the legend

kwds : keywords

Options to pass to matplotlib plotting method

Returns:

axes : matplotlib.AxesSubplot or np.array of them

Notes

  • See matplotlib documentation online for more on this subject
  • If kind = ‘bar’ or ‘barh’, you can specify relative alignments for bar plot layout by position keyword. From 0 (left/bottom-end) to 1 (right/top-end). Default is 0.5 (center)
  • If kind = ‘scatter’ and the argument c is the name of a dataframe column, the values of that column are used to color each point.
  • If kind = ‘hexbin’, you can control the size of the bins with the gridsize argument. By default, a histogram of the counts around each (x, y) point is computed. You can specify alternative aggregations by passing values to the C and reduce_C_function arguments. C specifies the value at each (x, y) point and reduce_C_function is a function of one argument that reduces all the values in a bin to a single number (e.g. mean, max, sum, std).