pandas.core.groupby.DataFrameGroupBy.quantile

DataFrameGroupBy.quantile(q=0.5, axis=0, numeric_only=True)

Return values at the given quantile over requested axis, a la numpy.percentile.

Parameters:

q : float or array-like, default 0.5 (50% quantile)

0 <= q <= 1, the quantile(s) to compute

axis : {0, 1}

0 for row-wise, 1 for column-wise

Returns:

quantiles : Series or DataFrame

If q is an array, a DataFrame will be returned where the index is q, the columns are the columns of self, and the values are the quantiles. If q is a float, a Series will be returned where the index is the columns of self and the values are the quantiles.

Examples

>>> df = DataFrame(np.array([[1, 1], [2, 10], [3, 100], [4, 100]]),
                  columns=['a', 'b'])
>>> df.quantile(.1)
a    1.3
b    3.7
dtype: float64
>>> df.quantile([.1, .5])
       a     b
0.1  1.3   3.7
0.5  2.5  55.0