Table Of Contents
- What’s New
- Installation
- Contributing to pandas
- Frequently Asked Questions (FAQ)
- Package overview
- 10 Minutes to pandas
- Tutorials
- Cookbook
- Intro to Data Structures
- Essential Basic Functionality
- Working with Text Data
- Options and Settings
- Indexing and Selecting Data
- MultiIndex / Advanced Indexing
- Computational tools
- Working with missing data
- Group By: split-apply-combine
- Merge, join, and concatenate
- Reshaping and Pivot Tables
- Time Series / Date functionality
- Time Deltas
- Categorical Data
- Visualization
- Style
- IO Tools (Text, CSV, HDF5, ...)
- Remote Data Access
- Enhancing Performance
- Sparse data structures
- Caveats and Gotchas
- rpy2 / R interface
- pandas Ecosystem
- Comparison with R / R libraries
- Comparison with SQL
- Comparison with SAS
- API Reference
- Input/Output
- General functions
- Series
- DataFrame
- Panel
- Panel4D
- Index
- CategoricalIndex
- MultiIndex
- DatetimeIndex
- pandas.DatetimeIndex
- pandas.DatetimeIndex.T
- pandas.DatetimeIndex.asi8
- pandas.DatetimeIndex.asobject
- pandas.DatetimeIndex.base
- pandas.DatetimeIndex.data
- pandas.DatetimeIndex.date
- pandas.DatetimeIndex.day
- pandas.DatetimeIndex.dayofweek
- pandas.DatetimeIndex.dayofyear
- pandas.DatetimeIndex.days_in_month
- pandas.DatetimeIndex.daysinmonth
- pandas.DatetimeIndex.dtype
- pandas.DatetimeIndex.dtype_str
- pandas.DatetimeIndex.flags
- pandas.DatetimeIndex.freq
- pandas.DatetimeIndex.freqstr
- pandas.DatetimeIndex.has_duplicates
- pandas.DatetimeIndex.hasnans
- pandas.DatetimeIndex.hour
- pandas.DatetimeIndex.inferred_freq
- pandas.DatetimeIndex.inferred_type
- pandas.DatetimeIndex.is_all_dates
- pandas.DatetimeIndex.is_leap_year
- pandas.DatetimeIndex.is_monotonic
- pandas.DatetimeIndex.is_monotonic_decreasing
- pandas.DatetimeIndex.is_monotonic_increasing
- pandas.DatetimeIndex.is_month_end
- pandas.DatetimeIndex.is_month_start
- pandas.DatetimeIndex.is_normalized
- pandas.DatetimeIndex.is_quarter_end
- pandas.DatetimeIndex.is_quarter_start
- pandas.DatetimeIndex.is_unique
- pandas.DatetimeIndex.is_year_end
- pandas.DatetimeIndex.is_year_start
- pandas.DatetimeIndex.itemsize
- pandas.DatetimeIndex.microsecond
- pandas.DatetimeIndex.minute
- pandas.DatetimeIndex.month
- pandas.DatetimeIndex.name
- pandas.DatetimeIndex.names
- pandas.DatetimeIndex.nanosecond
- pandas.DatetimeIndex.nbytes
- pandas.DatetimeIndex.ndim
- pandas.DatetimeIndex.nlevels
- pandas.DatetimeIndex.offset
- pandas.DatetimeIndex.quarter
- pandas.DatetimeIndex.resolution
- pandas.DatetimeIndex.second
- pandas.DatetimeIndex.shape
- pandas.DatetimeIndex.size
- pandas.DatetimeIndex.strides
- pandas.DatetimeIndex.time
- pandas.DatetimeIndex.tz
- pandas.DatetimeIndex.tzinfo
- pandas.DatetimeIndex.values
- pandas.DatetimeIndex.week
- pandas.DatetimeIndex.weekday
- pandas.DatetimeIndex.weekday_name
- pandas.DatetimeIndex.weekofyear
- pandas.DatetimeIndex.year
- pandas.DatetimeIndex.all
- pandas.DatetimeIndex.any
- pandas.DatetimeIndex.append
- pandas.DatetimeIndex.argmax
- pandas.DatetimeIndex.argmin
- pandas.DatetimeIndex.argsort
- pandas.DatetimeIndex.asof
- pandas.DatetimeIndex.asof_locs
- pandas.DatetimeIndex.astype
- pandas.DatetimeIndex.ceil
- pandas.DatetimeIndex.copy
- pandas.DatetimeIndex.delete
- pandas.DatetimeIndex.difference
- pandas.DatetimeIndex.drop
- pandas.DatetimeIndex.drop_duplicates
- pandas.DatetimeIndex.dropna
- pandas.DatetimeIndex.duplicated
- pandas.DatetimeIndex.equals
- pandas.DatetimeIndex.factorize
- pandas.DatetimeIndex.fillna
- pandas.DatetimeIndex.floor
- pandas.DatetimeIndex.format
- pandas.DatetimeIndex.get_duplicates
- pandas.DatetimeIndex.get_indexer
- pandas.DatetimeIndex.get_indexer_for
- pandas.DatetimeIndex.get_indexer_non_unique
- pandas.DatetimeIndex.get_level_values
- pandas.DatetimeIndex.get_loc
- pandas.DatetimeIndex.get_slice_bound
- pandas.DatetimeIndex.get_value
- pandas.DatetimeIndex.get_value_maybe_box
- pandas.DatetimeIndex.get_values
- pandas.DatetimeIndex.groupby
- pandas.DatetimeIndex.holds_integer
- pandas.DatetimeIndex.identical
- pandas.DatetimeIndex.indexer_at_time
- pandas.DatetimeIndex.indexer_between_time
- pandas.DatetimeIndex.insert
- pandas.DatetimeIndex.intersection
- pandas.DatetimeIndex.is
- pandas.DatetimeIndex.is_boolean
- pandas.DatetimeIndex.is_categorical
- pandas.DatetimeIndex.is_floating
- pandas.DatetimeIndex.is_integer
- pandas.DatetimeIndex.is_lexsorted_for_tuple
- pandas.DatetimeIndex.is_mixed
- pandas.DatetimeIndex.is_numeric
- pandas.DatetimeIndex.is_object
- pandas.DatetimeIndex.is_type_compatible
- pandas.DatetimeIndex.isin
- pandas.DatetimeIndex.item
- pandas.DatetimeIndex.join
- pandas.DatetimeIndex.map
- pandas.DatetimeIndex.max
- pandas.DatetimeIndex.memory_usage
- pandas.DatetimeIndex.min
- pandas.DatetimeIndex.normalize
- pandas.DatetimeIndex.nunique
- pandas.DatetimeIndex.order
- pandas.DatetimeIndex.putmask
- pandas.DatetimeIndex.ravel
- pandas.DatetimeIndex.reindex
- pandas.DatetimeIndex.rename
- pandas.DatetimeIndex.repeat
- pandas.DatetimeIndex.reshape
- pandas.DatetimeIndex.round
- pandas.DatetimeIndex.searchsorted
- pandas.DatetimeIndex.set_names
- pandas.DatetimeIndex.set_value
- pandas.DatetimeIndex.shift
- pandas.DatetimeIndex.slice_indexer
- pandas.DatetimeIndex.slice_locs
- pandas.DatetimeIndex.snap
- pandas.DatetimeIndex.sort
- pandas.DatetimeIndex.sort_values
- pandas.DatetimeIndex.sortlevel
- pandas.DatetimeIndex.str
- pandas.DatetimeIndex.strftime
- pandas.DatetimeIndex.summary
- pandas.DatetimeIndex.sym_diff
- pandas.DatetimeIndex.symmetric_difference
- pandas.DatetimeIndex.take
- pandas.DatetimeIndex.to_datetime
- pandas.DatetimeIndex.to_julian_date
- pandas.DatetimeIndex.to_native_types
- pandas.DatetimeIndex.to_period
- pandas.DatetimeIndex.to_perioddelta
- pandas.DatetimeIndex.to_pydatetime
- pandas.DatetimeIndex.to_series
- pandas.DatetimeIndex.tolist
- pandas.DatetimeIndex.transpose
- pandas.DatetimeIndex.tz_convert
- pandas.DatetimeIndex.tz_localize
- pandas.DatetimeIndex.union
- pandas.DatetimeIndex.union_many
- pandas.DatetimeIndex.unique
- pandas.DatetimeIndex.value_counts
- pandas.DatetimeIndex.view
- pandas.DatetimeIndex.where
- Time/Date Components
- Selecting
- Time-specific operations
- Conversion
- pandas.DatetimeIndex
- TimedeltaIndex
- Window
- GroupBy
- Resampling
- Style
- General utility functions
- Internals
- Release Notes
Search
Enter search terms or a module, class or function name.
pandas.DatetimeIndex.fillna¶
-
DatetimeIndex.
fillna
(value=None, downcast=None)[source]¶ Fill NA/NaN values with the specified value
Parameters: value : scalar
Scalar value to use to fill holes (e.g. 0). This value cannot be a list-likes.
downcast : dict, default is None
a dict of item->dtype of what to downcast if possible, or the string ‘infer’ which will try to downcast to an appropriate equal type (e.g. float64 to int64 if possible)
Returns: filled : %(klass)s