pandas.get_dummies

pandas.get_dummies(data, prefix=None, prefix_sep='_', dummy_na=False, columns=None, sparse=False, drop_first=False)[source]

Convert categorical variable into dummy/indicator variables

Parameters:

data : array-like, Series, or DataFrame

prefix : string, list of strings, or dict of strings, default None

String to append DataFrame column names Pass a list with length equal to the number of columns when calling get_dummies on a DataFrame. Alternativly, prefix can be a dictionary mapping column names to prefixes.

prefix_sep : string, default ‘_’

If appending prefix, separator/delimiter to use. Or pass a list or dictionary as with prefix.

dummy_na : bool, default False

Add a column to indicate NaNs, if False NaNs are ignored.

columns : list-like, default None

Column names in the DataFrame to be encoded. If columns is None then all the columns with object or category dtype will be converted.

sparse : bool, default False

Whether the dummy columns should be sparse or not. Returns SparseDataFrame if data is a Series or if all columns are included. Otherwise returns a DataFrame with some SparseBlocks.

New in version 0.16.1.

drop_first : bool, default False

Whether to get k-1 dummies out of k categorical levels by removing the first level.

New in version 0.18.0.

Returns

——-

dummies : DataFrame or SparseDataFrame

Examples

>>> import pandas as pd
>>> s = pd.Series(list('abca'))
>>> pd.get_dummies(s)
   a  b  c
0  1  0  0
1  0  1  0
2  0  0  1
3  1  0  0
>>> s1 = ['a', 'b', np.nan]
>>> pd.get_dummies(s1)
   a  b
0  1  0
1  0  1
2  0  0
>>> pd.get_dummies(s1, dummy_na=True)
   a  b  NaN
0  1  0    0
1  0  1    0
2  0  0    1
>>> df = pd.DataFrame({'A': ['a', 'b', 'a'], 'B': ['b', 'a', 'c'],
                    'C': [1, 2, 3]})
>>> pd.get_dummies(df, prefix=['col1', 'col2'])
   C  col1_a  col1_b  col2_a  col2_b  col2_c
0  1       1       0       0       1       0
1  2       0       1       1       0       0
2  3       1       0       0       0       1
>>> pd.get_dummies(pd.Series(list('abcaa')))
   a  b  c
0  1  0  0
1  0  1  0
2  0  0  1
3  1  0  0
4  1  0  0
>>> pd.get_dummies(pd.Series(list('abcaa')), drop_first=True))
   b  c
0  0  0
1  1  0
2  0  1
3  0  0
4  0  0
Scroll To Top