pandas.read_stata

pandas.read_stata(filepath_or_buffer, convert_dates=True, convert_categoricals=True, encoding=None, index=None, convert_missing=False, preserve_dtypes=True, columns=None, order_categoricals=True, chunksize=None, iterator=False)[source]

Read Stata file into DataFrame

Parameters:

filepath_or_buffer : string or file-like object

Path to .dta file or object implementing a binary read() functions

convert_dates : boolean, defaults to True

Convert date variables to DataFrame time values

convert_categoricals : boolean, defaults to True

Read value labels and convert columns to Categorical/Factor variables

encoding : string, None or encoding

Encoding used to parse the files. None defaults to iso-8859-1.

index : identifier of index column

identifier of column that should be used as index of the DataFrame

convert_missing : boolean, defaults to False

Flag indicating whether to convert missing values to their Stata representations. If False, missing values are replaced with nans. If True, columns containing missing values are returned with object data types and missing values are represented by StataMissingValue objects.

preserve_dtypes : boolean, defaults to True

Preserve Stata datatypes. If False, numeric data are upcast to pandas default types for foreign data (float64 or int64)

columns : list or None

Columns to retain. Columns will be returned in the given order. None returns all columns

order_categoricals : boolean, defaults to True

Flag indicating whether converted categorical data are ordered.

chunksize : int, default None

Return StataReader object for iterations, returns chunks with given number of lines

iterator : boolean, default False

Return StataReader object

Returns:

DataFrame or StataReader

Examples

Read a Stata dta file:

>>> df = pandas.read_stata('filename.dta')

Read a Stata dta file in 10,000 line chunks:

>>> itr = pandas.read_stata('filename.dta', chunksize=10000)
>>> for chunk in itr:
>>>     do_something(chunk)
Scroll To Top