Categorical Data¶
New in version 0.15.
Note
While there was pandas.Categorical in earlier versions, the ability to use categorical data in Series and DataFrame is new.
This is an introduction to pandas categorical data type, including a short comparison
with R’s factor
.
Categoricals are a pandas data type, which correspond to categorical variables in statistics: a variable, which can take on only a limited, and usually fixed, number of possible values (categories; levels in R). Examples are gender, social class, blood types, country affiliations, observation time or ratings via Likert scales.
In contrast to statistical categorical variables, categorical data might have an order (e.g. ‘strongly agree’ vs ‘agree’ or ‘first observation’ vs. ‘second observation’), but numerical operations (additions, divisions, ...) are not possible.
All values of categorical data are either in categories or np.nan. Order is defined by the order of categories, not lexical order of the values. Internally, the data structure consists of a categories array and an integer array of codes which point to the real value in the categories array.
The categorical data type is useful in the following cases:
- A string variable consisting of only a few different values. Converting such a string variable to a categorical variable will save some memory, see here.
- The lexical order of a variable is not the same as the logical order (“one”, “two”, “three”). By converting to a categorical and specifying an order on the categories, sorting and min/max will use the logical order instead of the lexical order, see here.
- As a signal to other python libraries that this column should be treated as a categorical variable (e.g. to use suitable statistical methods or plot types).
See also the API docs on categoricals.
Object Creation¶
Categorical Series or columns in a DataFrame can be created in several ways:
By specifying dtype="category"
when constructing a Series:
In [1]: s = pd.Series(["a","b","c","a"], dtype="category")
In [2]: s
Out[2]:
0 a
1 b
2 c
3 a
dtype: category
Categories (3, object): [a, b, c]
By converting an existing Series or column to a category
dtype:
In [3]: df = pd.DataFrame({"A":["a","b","c","a"]})
In [4]: df["B"] = df["A"].astype('category')
In [5]: df
Out[5]:
A B
0 a a
1 b b
2 c c
3 a a
By using some special functions:
In [6]: df = pd.DataFrame({'value': np.random.randint(0, 100, 20)})
In [7]: labels = [ "{0} - {1}".format(i, i + 9) for i in range(0, 100, 10) ]
In [8]: df['group'] = pd.cut(df.value, range(0, 105, 10), right=False, labels=labels)
In [9]: df.head(10)
Out[9]:
value group
0 65 60 - 69
1 49 40 - 49
2 56 50 - 59
3 43 40 - 49
4 43 40 - 49
5 91 90 - 99
6 32 30 - 39
7 87 80 - 89
8 36 30 - 39
9 8 0 - 9
See documentation for cut()
.
By passing a pandas.Categorical
object to a Series or assigning it to a DataFrame.
In [10]: raw_cat = pd.Categorical(["a","b","c","a"], categories=["b","c","d"],
....: ordered=False)
....:
In [11]: s = pd.Series(raw_cat)
In [12]: s
Out[12]:
0 NaN
1 b
2 c
3 NaN
dtype: category
Categories (3, object): [b, c, d]
In [13]: df = pd.DataFrame({"A":["a","b","c","a"]})
In [14]: df["B"] = raw_cat
In [15]: df
Out[15]:
A B
0 a NaN
1 b b
2 c c
3 a NaN
You can also specify differently ordered categories or make the resulting data ordered, by passing these arguments to astype()
:
In [16]: s = pd.Series(["a","b","c","a"])
In [17]: s_cat = s.astype("category", categories=["b","c","d"], ordered=False)
In [18]: s_cat
Out[18]:
0 NaN
1 b
2 c
3 NaN
dtype: category
Categories (3, object): [b, c, d]
Categorical data has a specific category
dtype:
In [19]: df.dtypes
Out[19]:
A object
B category
dtype: object
Note
In contrast to R’s factor function, categorical data is not converting input values to strings and categories will end up the same data type as the original values.
Note
In contrast to R’s factor function, there is currently no way to assign/change labels at creation time. Use categories to change the categories after creation time.
To get back to the original Series or numpy array, use Series.astype(original_dtype)
or
np.asarray(categorical)
:
In [20]: s = pd.Series(["a","b","c","a"])
In [21]: s
Out[21]:
0 a
1 b
2 c
3 a
dtype: object
In [22]: s2 = s.astype('category')
In [23]: s2
Out[23]:
0 a
1 b
2 c
3 a
dtype: category
Categories (3, object): [a, b, c]
In [24]: s2.astype(str)