Reshaping and Pivot Tables¶
Reshaping by pivoting DataFrame objects¶
Data is often stored in CSV files or databases in so-called “stacked” or “record” format:
In [1]: df
Out[1]: 
         date variable     value
0  2000-01-03        A  0.469112
1  2000-01-04        A -0.282863
2  2000-01-05        A -1.509059
3  2000-01-03        B -1.135632
4  2000-01-04        B  1.212112
5  2000-01-05        B -0.173215
6  2000-01-03        C  0.119209
7  2000-01-04        C -1.044236
8  2000-01-05        C -0.861849
9  2000-01-03        D -2.104569
10 2000-01-04        D -0.494929
11 2000-01-05        D  1.071804
For the curious here is how the above DataFrame was created:
import pandas.util.testing as tm; tm.N = 3
def unpivot(frame):
    N, K = frame.shape
    data = {'value' : frame.values.ravel('F'),
            'variable' : np.asarray(frame.columns).repeat(N),
            'date' : np.tile(np.asarray(frame.index), K)}
    return pd.DataFrame(data, columns=['date', 'variable', 'value'])
df = unpivot(tm.makeTimeDataFrame())
To select out everything for variable A we could do:
In [2]: df[df['variable'] == 'A']
Out[2]: 
        date variable     value
0 2000-01-03        A  0.469112
1 2000-01-04        A -0.282863
2 2000-01-05        A -1.509059
But suppose we wish to do time series operations with the variables. A better
representation would be where the columns are the unique variables and an
index of dates identifies individual observations. To reshape the data into
this form, use the pivot function:
In [3]: df.pivot(index='date', columns='variable', values='value')
Out[3]: 
variable           A         B         C         D
date                                              
2000-01-03  0.469112 -1.135632  0.119209 -2.104569
2000-01-04 -0.282863  1.212112 -1.044236 -0.494929
2000-01-05 -1.509059 -0.173215 -0.861849  1.071804
If the values argument is omitted, and the input DataFrame has more than
one column of values which are not used as column or index inputs to pivot,
then the resulting “pivoted” DataFrame will have hierarchical columns whose topmost level indicates the respective value
column:
In [4]: df['value2'] = df['value'] * 2
In [5]: pivoted = df.pivot('date', 'variable')
In [6]: pivoted
Out[6]: 
               value                                  value2            \
variable           A         B         C         D         A         B   
date                                                                     
2000-01-03  0.469112 -1.135632  0.119209 -2.104569  0.938225 -2.271265   
2000-01-04 -0.282863  1.212112 -1.044236 -0.494929 -0.565727  2.424224   
2000-01-05 -1.509059 -0.173215 -0.861849  1.071804 -3.018117 -0.346429   
                                
variable           C         D  
date                            
2000-01-03  0.238417 -4.209138  
2000-01-04 -2.088472 -0.989859  
2000-01-05 -1.723698  2.143608  
You of course can then select subsets from the pivoted DataFrame:
In [7]: pivoted['value2']
Out[7]: 
variable           A         B         C         D
date                                              
2000-01-03  0.938225 -2.271265  0.238417 -4.209138
2000-01-04 -0.565727  2.424224 -2.088472 -0.989859
2000-01-05 -3.018117 -0.346429 -1.723698  2.143608
Note that this returns a view on the underlying data in the case where the data are homogeneously-typed.
Reshaping by stacking and unstacking¶
Closely related to the pivot function are the related stack and
unstack functions currently available on Series and DataFrame. These
functions are designed to work together with MultiIndex objects (see the
section on hierarchical indexing). Here are
essentially what these functions do:
stack: “pivot” a level of the (possibly hierarchical) column labels, returning a DataFrame with an index with a new inner-most level of row labels.
unstack: inverse operation fromstack: “pivot” a level of the (possibly hierarchical) row index to the column axis, producing a reshaped DataFrame with a new inner-most level of column labels.
The clearest way to explain is by example. Let’s take a prior example data set from the hierarchical indexing section:
In [8]: tuples = list(zip(*[['bar', 'bar', 'baz', 'baz',
   ...:                      'foo', 'foo', 'qux', 'qux'],
   ...:                     ['one', 'two', 'one', 'two',
   ...:                      'one', 'two', 'one', 'two']]))
   ...: 
In [9]: index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])
In [10]: df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=['A', 'B'])
In [11]: df2 = df[:4]
In [12]: df2
Out[12]: 
                     A         B
first second                    
bar   one     0.721555 -0.706771
      two    -1.039575  0.271860
baz   one    -0.424972  0.567020
      two     0.276232 -1.087401
The stack function “compresses” a level in the DataFrame’s columns to
produce either:
- A Series, in the case of a simple column Index
- A DataFrame, in the case of a
MultiIndexin the columns
If the columns have a MultiIndex, you can choose which level to stack. The
stacked level becomes the new lowest level in a MultiIndex on the columns:
In [13]: stacked = df2.stack()
In [14]: stacked
Out[14]: 
first  second   
bar    one     A    0.721555
               B   -0.706771
       two     A   -1.039575
               B    0.271860
baz    one     A   -0.424972
               B    0.567020
       two     A    0.276232
               B   -1.087401
dtype: float64
With a “stacked” DataFrame or Series (having a MultiIndex as the
index), the inverse operation of stack is unstack, which by default
unstacks the last level:
In [15]: stacked.unstack()
Out[15]: 
                     A         B
first second                    
bar   one     0.721555 -0.706771
      two    -1.039575  0.271860
baz   one    -0.424972  0.567020
      two     0.276232 -1.087401
In [16]: stacked.unstack(1)