Internals¶
This section will provide a look into some of pandas internals.
Indexing¶
In pandas there are a few objects implemented which can serve as valid containers for the axis labels:
- Index: the generic “ordered set” object, an ndarray of object dtype assuming nothing about its contents. The labels must be hashable (and likely immutable) and unique. Populates a dict of label to location in Cython to do- O(1)lookups.
- Int64Index: a version of- Indexhighly optimized for 64-bit integer data, such as time stamps
- Float64Index: a version of- Indexhighly optimized for 64-bit float data
- MultiIndex: the standard hierarchical index object
- DatetimeIndex: An Index object with- Timestampboxed elements (impl are the int64 values)
- TimedeltaIndex: An Index object with- Timedeltaboxed elements (impl are the in64 values)
- PeriodIndex: An Index object with Period elements
There are functions that make the creation of a regular index easy:
- date_range: fixed frequency date range generated from a time rule or DateOffset. An ndarray of Python datetime objects
- period_range: fixed frequency date range generated from a time rule or DateOffset. An ndarray of- Periodobjects, representing Timespans
The motivation for having an Index class in the first place was to enable
different implementations of indexing. This means that it’s possible for you,
the user, to implement a custom Index subclass that may be better suited to
a particular application than the ones provided in pandas.
From an internal implementation point of view, the relevant methods that an
Index must define are one or more of the following (depending on how
incompatible the new object internals are with the Index functions):
- get_loc: returns an “indexer” (an integer, or in some cases a slice object) for a label
- slice_locs: returns the “range” to slice between two labels
- get_indexer: Computes the indexing vector for reindexing / data alignment purposes. See the source / docstrings for more on this
- get_indexer_non_unique: Computes the indexing vector for reindexing / data alignment purposes when the index is non-unique. See the source / docstrings for more on this
- reindex: Does any pre-conversion of the input index then calls- get_indexer
- union,- intersection: computes the union or intersection of two Index objects
- insert: Inserts a new label into an Index, yielding a new object
- delete: Delete a label, yielding a new object
- drop: Deletes a set of labels
- take: Analogous to ndarray.take
MultiIndex¶
Internally, the MultiIndex consists of a few things: the levels, the
integer labels, and the level names:
In [1]: index = pd.MultiIndex.from_product([range(3), ['one', 'two']], names=['first', 'second'])
In [2]: index
Out[2]: 
MultiIndex(levels=[[0, 1, 2], ['one', 'two']],
           labels=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]],
           names=['first', 'second'])
In [3]: index.levels