pandas.core.window.rolling.Rolling.pipe#

final Rolling.pipe(func, *args, **kwargs)[source]#

Apply a func with arguments to this Rolling object and return its result.

Use .pipe when you want to improve readability by chaining together functions that expect Series, DataFrames, GroupBy, Rolling, Expanding or Resampler objects. Instead of writing

>>> h = lambda x, arg2, arg3: x + 1 - arg2 * arg3
>>> g = lambda x, arg1: x * 5 / arg1
>>> f = lambda x: x ** 4
>>> df = pd.DataFrame({'A': [1, 2, 3, 4]}, index=pd.date_range('2012-08-02', periods=4))
>>> h(g(f(df.rolling('2D')), arg1=1), arg2=2, arg3=3)  

You can write

>>> (df.rolling('2D')
...    .pipe(f)
...    .pipe(g, arg1=1)
...    .pipe(h, arg2=2, arg3=3))  

which is much more readable.

Parameters:
funccallable or tuple of (callable, str)

Function to apply to this Rolling object or, alternatively, a (callable, data_keyword) tuple where data_keyword is a string indicating the keyword of callable that expects the Rolling object.

*argsiterable, optional

Positional arguments passed into func.

**kwargsdict, optional

A dictionary of keyword arguments passed into func.

Returns:
Rolling

The original object with the function func applied.

See also

Series.pipe

Apply a function with arguments to a series.

DataFrame.pipe

Apply a function with arguments to a dataframe.

apply

Apply function to each group instead of to the full Rolling object.

Notes

See more here

Examples

>>> df = pd.DataFrame({'A': [1, 2, 3, 4]},
...                   index=pd.date_range('2012-08-02', periods=4))
>>> df
            A
2012-08-02  1
2012-08-03  2
2012-08-04  3
2012-08-05  4

To get the difference between each rolling 2-day window’s maximum and minimum value in one pass, you can do

>>> df.rolling('2D').pipe(lambda x: x.max() - x.min())
              A
2012-08-02  0.0
2012-08-03  1.0
2012-08-04  1.0
2012-08-05  1.0