pandas.core.window.rolling.Window.var#
- Window.var(ddof=1, numeric_only=False, **kwargs)[source]#
Calculate the rolling weighted window variance.
- Parameters:
- ddofint, default 1
Delta Degrees of Freedom. The divisor used in calculations is
N - ddof
, whereN
represents the number of elements.- numeric_onlybool, default False
Include only float, int, boolean columns.
Added in version 1.5.0.
- **kwargs
Keyword arguments to configure the
SciPy
weighted window type.
- Returns:
- Series or DataFrame
Return type is the same as the original object with
np.float64
dtype.
See also
Series.rolling
Calling rolling with Series data.
DataFrame.rolling
Calling rolling with DataFrames.
Series.var
Aggregating var for Series.
DataFrame.var
Aggregating var for DataFrame.
Examples
>>> ser = pd.Series([0, 1, 5, 2, 8])
To get an instance of
Window
we need to pass the parameter win_type.>>> type(ser.rolling(2, win_type='gaussian')) <class 'pandas.core.window.rolling.Window'>
In order to use the SciPy Gaussian window we need to provide the parameters M and std. The parameter M corresponds to 2 in our example. We pass the second parameter std as a parameter of the following method:
>>> ser.rolling(2, win_type='gaussian').var(std=3) 0 NaN 1 0.5 2 8.0 3 4.5 4 18.0 dtype: float64