Search
Search Results
Search finished, found 137 page(s) matching the search query.
- pandas.core.groupby.DataFrameGroupBy.rolling (Python method, in pandas.core.groupby.DataFrameGroupBy.rolling)
- pandas.core.groupby.SeriesGroupBy.rolling (Python method, in pandas.core.groupby.SeriesGroupBy.rolling)
- pandas.DataFrame.rolling (Python method, in pandas.DataFrame.rolling)
- pandas.Series.rolling (Python method, in pandas.Series.rolling)
- pandas.core.groupby.DataFrameGroupBy.rolling
pandas.core.groupby.DataFrameGroupBy.rolling DataFrameGroupBy.rolling(*args, **kwargs)[source] Return a rolling grouper, providing rolling functionality per group. Parameters: windowint, timedelta, str, offset, or...
- pandas.core.groupby.SeriesGroupBy.rolling
pandas.core.groupby.SeriesGroupBy.rolling SeriesGroupBy.rolling(*args, **kwargs)[source] Return a rolling grouper, providing rolling functionality per group. Parameters: windowint, timedelta, str, offset, or BaseI...
- pandas.core.window.rolling.Rolling.aggregate
pandas.core.window.rolling.Rolling.aggregate Rolling.aggregate(func, *args, **kwargs)[source] Aggregate using one or more operations over the specified axis. Parameters: funcfunction, str, list or dictFunction to...
- pandas.core.window.rolling.Rolling.apply
pandas.core.window.rolling.Rolling.apply Rolling.apply(func, raw=False, engine=None, engine_kwargs=None, args=None, kwargs=None)[source] Calculate the rolling custom aggregation function. Parameters: funcfunctionM...
- pandas.core.window.rolling.Rolling.corr
pandas.core.window.rolling.Rolling.corr Rolling.corr(other=None, pairwise=None, ddof=1, numeric_only=False)[source] Calculate the rolling correlation. Parameters: otherSeries or DataFrame, optionalIf not supplied...
- pandas.core.window.rolling.Rolling.count
pandas.core.window.rolling.Rolling.count Rolling.count(numeric_only=False)[source] Calculate the rolling count of non NaN observations. Parameters: numeric_onlybool, default FalseInclude only float, int, boolean c...
- pandas.core.window.rolling.Rolling.cov
pandas.core.window.rolling.Rolling.cov Rolling.cov(other=None, pairwise=None, ddof=1, numeric_only=False)[source] Calculate the rolling sample covariance. Parameters: otherSeries or DataFrame, optionalIf not suppl...
- pandas.core.window.rolling.Rolling.kurt
pandas.core.window.rolling.Rolling.kurt Rolling.kurt(numeric_only=False)[source] Calculate the rolling Fisher’s definition of kurtosis without bias. Parameters: numeric_onlybool, default FalseInclude only float, i...
- pandas.core.window.rolling.Rolling.max
pandas.core.window.rolling.Rolling.max Rolling.max(numeric_only=False, *args, engine=None, engine_kwargs=None, **kwargs)[source] Calculate the rolling maximum. Parameters: numeric_onlybool, default FalseInclude on...
- pandas.core.window.rolling.Rolling.mean
- pandas.core.window.rolling.Rolling.median
pandas.core.window.rolling.Rolling.median Rolling.median(numeric_only=False, engine=None, engine_kwargs=None)[source] Calculate the rolling median. Parameters: numeric_onlybool, default FalseInclude only float, in...
- pandas.core.window.rolling.Rolling.min
pandas.core.window.rolling.Rolling.min Rolling.min(numeric_only=False, engine=None, engine_kwargs=None)[source] Calculate the rolling minimum. Parameters: numeric_onlybool, default FalseInclude only float, int, bo...
- pandas.core.window.rolling.Rolling.quantile
pandas.core.window.rolling.Rolling.quantile Rolling.quantile(q, interpolation='linear', numeric_only=False)[source] Calculate the rolling quantile. Parameters: quantilefloatQuantile to compute. 0 <= quantile <= 1....
- pandas.core.window.rolling.Rolling.rank
pandas.core.window.rolling.Rolling.rank Rolling.rank(method='average', ascending=True, pct=False, numeric_only=False)[source] Calculate the rolling rank. Added in version 1.4.0. Parameters: method{‘average’, ‘mi...
- pandas.core.window.rolling.Rolling.sem
- pandas.core.window.rolling.Rolling.skew
- pandas.core.window.rolling.Rolling.std
- pandas.core.window.rolling.Rolling.sum
- pandas.core.window.rolling.Rolling.var
- pandas.core.window.rolling.Window.mean
- pandas.core.window.rolling.Window.std
- pandas.core.window.rolling.Window.sum
- pandas.core.window.rolling.Window.var
- pandas.DataFrame.rolling
- pandas.Series.rolling
- Version 0.15.0 (October 18, 2014)
- Version 0.19.0 (October 2, 2016)
- Version 0.20.1 (May 5, 2017)
- Version 0.20.2 (June 4, 2017)
- Version 0.21.0 (October 27, 2017)
- Version 0.21.1 (December 12, 2017)
- Version 0.22.0 (December 29, 2017)
- What’s new in 0.23.0 (May 15, 2018)
- What’s new in 0.24.0 (January 25, 2019)
- What’s new in 0.25.0 (July 18, 2019)
- What’s new in 0.25.1 (August 21, 2019)
- What’s new in 0.25.2 (October 15, 2019)
- What’s new in 0.25.3 (October 31, 2019)
- What’s new in 1.0.0 (January 29, 2020)
- What’s new in 1.1.0 (July 28, 2020)
- What’s new in 1.2.0 (December 26, 2020)
- What’s new in 1.3.0 (July 2, 2021)
- What’s new in 1.4.0 (January 22, 2022)
- What’s new in 1.5.0 (September 19, 2022)
- What’s new in 2.0.0 (April 3, 2023)
- What’s new in 2.1.0 (Aug 30, 2023)
- What’s new in 2.2.0 (January 19, 2024)
- Window
- Windowing operations
- Windowing operations > Rolling apply
- Windowing operations > Rolling window
- API reference
- Chart visualization
- Cookbook
- Enhancing performance
- Essential basic functionality
- Group by: split-apply-combine
- pandas.api.indexers.BaseIndexer
- pandas.api.indexers.FixedForwardWindowIndexer
- pandas.api.indexers.VariableOffsetWindowIndexer
- pandas.core.groupby.DataFrameGroupBy.cov
- pandas.core.groupby.DataFrameGroupBy.max
- pandas.core.groupby.DataFrameGroupBy.min
- pandas.core.groupby.DataFrameGroupBy.sum
- pandas.core.groupby.SeriesGroupBy.max
- pandas.core.groupby.SeriesGroupBy.min
- pandas.core.groupby.SeriesGroupBy.sum
- pandas.core.window.expanding.Expanding.apply
- pandas.core.window.expanding.Expanding.kurt
- pandas.core.window.expanding.Expanding.skew
- pandas.core.window.expanding.Expanding.std
- pandas.core.window.expanding.Expanding.var
- pandas.core.window.rolling.Rolling.aggregate (Python method, in pandas.core.window.rolling.Rolling.aggregate)
- pandas.core.window.rolling.Rolling.apply (Python method, in pandas.core.window.rolling.Rolling.apply)
- pandas.core.window.rolling.Rolling.corr (Python method, in pandas.core.window.rolling.Rolling.corr)
- pandas.core.window.rolling.Rolling.count (Python method, in pandas.core.window.rolling.Rolling.count)
- pandas.core.window.rolling.Rolling.cov (Python method, in pandas.core.window.rolling.Rolling.cov)
- pandas.core.window.rolling.Rolling.kurt (Python method, in pandas.core.window.rolling.Rolling.kurt)
- pandas.core.window.rolling.Rolling.max (Python method, in pandas.core.window.rolling.Rolling.max)
- pandas.core.window.rolling.Rolling.mean (Python method, in pandas.core.window.rolling.Rolling.mean)
- pandas.core.window.rolling.Rolling.median (Python method, in pandas.core.window.rolling.Rolling.median)
- pandas.core.window.rolling.Rolling.min (Python method, in pandas.core.window.rolling.Rolling.min)
- pandas.core.window.rolling.Rolling.quantile (Python method, in pandas.core.window.rolling.Rolling.quantile)
- pandas.core.window.rolling.Rolling.rank (Python method, in pandas.core.window.rolling.Rolling.rank)
- pandas.core.window.rolling.Rolling.sem (Python method, in pandas.core.window.rolling.Rolling.sem)
- pandas.core.window.rolling.Rolling.skew (Python method, in pandas.core.window.rolling.Rolling.skew)
- pandas.core.window.rolling.Rolling.std (Python method, in pandas.core.window.rolling.Rolling.std)
- pandas.core.window.rolling.Rolling.sum (Python method, in pandas.core.window.rolling.Rolling.sum)
- pandas.core.window.rolling.Rolling.var (Python method, in pandas.core.window.rolling.Rolling.var)
- pandas.core.window.rolling.Window.mean (Python method, in pandas.core.window.rolling.Window.mean)
- pandas.core.window.rolling.Window.std (Python method, in pandas.core.window.rolling.Window.std)
- pandas.core.window.rolling.Window.sum (Python method, in pandas.core.window.rolling.Window.sum)
- pandas.core.window.rolling.Window.var (Python method, in pandas.core.window.rolling.Window.var)
- pandas.DataFrame.agg
- pandas.DataFrame.aggregate
- pandas.DataFrame.cov
- pandas.DataFrame.ewm
- pandas.DataFrame.expanding
- pandas.DataFrame.plot.hist
- pandas.DataFrame.quantile
- pandas.DataFrame.to_sql
- pandas.errors.DataError
- pandas.Series.ewm
- pandas.Series.expanding
- pandas.Series.plot.hist
- pandas.Series.quantile
- pandas.Series.to_sql
- pandas.tseries.offsets.DateOffset
- Time series / date functionality
- User Guide
- Version 0.13.0 (January 3, 2014)
- Version 0.13.1 (February 3, 2014)
- Version 0.14.0 (May 31 , 2014)
- Version 0.17.1 (November 21, 2015)
- Version 0.18.0 (March 13, 2016)
- Version 0.18.1 (May 3, 2016)
- Version 0.20.3 (July 7, 2017)
- Version 0.8.1 (July 22, 2012)
- What’s new in 0.23.1 (June 12, 2018)
- What’s new in 0.23.4 (August 3, 2018)
- What’s new in 1.0.2 (March 12, 2020)
- What’s new in 1.0.4 (May 28, 2020)
- What’s new in 1.1.1 (August 20, 2020)
- What’s new in 1.1.2 (September 8, 2020)
- What’s new in 1.1.5 (December 07, 2020)
- What’s new in 1.2.1 (January 20, 2021)
- What’s new in 1.2.2 (February 09, 2021)
- What’s new in 1.3.2 (August 15, 2021)
- What’s new in 1.3.4 (October 17, 2021)
- What’s new in 1.4.1 (February 12, 2022)
- What’s new in 1.4.2 (April 2, 2022)
- What’s new in 1.4.3 (June 23, 2022)
- What’s new in 2.1.2 (October 26, 2023)