pandas.Categorical¶
- class pandas.Categorical(values, categories=None, ordered=False, name=None, fastpath=False, levels=None)¶
Represents a categorical variable in classic R / S-plus fashion
Categoricals can only take on only a limited, and usually fixed, number of possible values (categories). In contrast to statistical categorical variables, a Categorical might have an order, but numerical operations (additions, divisions, ...) are not possible.
All values of the Categorical are either in categories or np.nan. Assigning values outside of categories will raise a ValueError. Order is defined by the order of the categories, not lexical order of the values.
Parameters: values : list-like
The values of the categorical. If categories are given, values not in categories will be replaced with NaN.
categories : Index-like (unique), optional
The unique categories for this categorical. If not given, the categories are assumed to be the unique values of values.
ordered : boolean, (default False)
Whether or not this categorical is treated as a ordered categorical. If not given, the resulting categorical will not be ordered.
name : str, optional
Name for the Categorical variable. If name is None, will attempt to infer from values.
Raises: ValueError
If the categories do not validate.
TypeError
If an explicit ordered=True is given but no categories and the values are not sortable.
Examples
>>> from pandas import Categorical >>> Categorical([1, 2, 3, 1, 2, 3]) [1, 2, 3, 1, 2, 3] Categories (3, int64): [1 < 2 < 3]
>>> Categorical(['a', 'b', 'c', 'a', 'b', 'c']) [a, b, c, a, b, c] Categories (3, object): [a < b < c]
>>> a = Categorical(['a','b','c','a','b','c'], ['c', 'b', 'a']) >>> a.min() 'c'