pandas.core.groupby.DataFrameGroupBy.rank¶
- DataFrameGroupBy.rank(axis=0, numeric_only=None, method='average', na_option='keep', ascending=True, pct=False)¶
Compute numerical data ranks (1 through n) along axis. Equal values are assigned a rank that is the average of the ranks of those values
Parameters: axis : {0 or ‘index’, 1 or ‘columns’}, default 0
Ranks over columns (0) or rows (1)
numeric_only : boolean, default None
Include only float, int, boolean data
method : {‘average’, ‘min’, ‘max’, ‘first’, ‘dense’}
- average: average rank of group
- min: lowest rank in group
- max: highest rank in group
- first: ranks assigned in order they appear in the array
- dense: like ‘min’, but rank always increases by 1 between groups
na_option : {‘keep’, ‘top’, ‘bottom’}
- keep: leave NA values where they are
- top: smallest rank if ascending
- bottom: smallest rank if descending
ascending : boolean, default True
False for ranks by high (1) to low (N)
pct : boolean, default False
Computes percentage rank of data
Returns: ranks : DataFrame