pandas.DataFrame.combine

DataFrame.combine(self, other, func, fill_value=None, overwrite=True)[source]

Perform column-wise combine with another DataFrame.

Combines a DataFrame with other DataFrame using func to element-wise combine columns. The row and column indexes of the resulting DataFrame will be the union of the two.

Parameters:
other : DataFrame

The DataFrame to merge column-wise.

func : function

Function that takes two series as inputs and return a Series or a scalar. Used to merge the two dataframes column by columns.

fill_value : scalar value, default None

The value to fill NaNs with prior to passing any column to the merge func.

overwrite : bool, default True

If True, columns in self that do not exist in other will be overwritten with NaNs.

Returns:
DataFrame

Combination of the provided DataFrames.

See also

DataFrame.combine_first
Combine two DataFrame objects and default to non-null values in frame calling the method.

Examples

Combine using a simple function that chooses the smaller column.

>>> df1 = pd.DataFrame({'A': [0, 0], 'B': [4, 4]})
>>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]})
>>> take_smaller = lambda s1, s2: s1 if s1.sum() < s2.sum() else s2
>>> df1.combine(df2, take_smaller)
   A  B
0  0  3
1  0  3

Example using a true element-wise combine function.

>>> df1 = pd.DataFrame({'A': [5, 0], 'B': [2, 4]})
>>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]})
>>> df1.combine(df2, np.minimum)
   A  B
0  1  2
1  0  3

Using fill_value fills Nones prior to passing the column to the merge function.

>>> df1 = pd.DataFrame({'A': [0, 0], 'B': [None, 4]})
>>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]})
>>> df1.combine(df2, take_smaller, fill_value=-5)
   A    B
0  0 -5.0
1  0  4.0

However, if the same element in both dataframes is None, that None is preserved

>>> df1 = pd.DataFrame({'A': [0, 0], 'B': [None, 4]})
>>> df2 = pd.DataFrame({'A': [1, 1], 'B': [None, 3]})
>>> df1.combine(df2, take_smaller, fill_value=-5)
    A    B
0  0 -5.0
1  0  3.0

Example that demonstrates the use of overwrite and behavior when the axis differ between the dataframes.

>>> df1 = pd.DataFrame({'A': [0, 0], 'B': [4, 4]})
>>> df2 = pd.DataFrame({'B': [3, 3], 'C': [-10, 1], }, index=[1, 2])
>>> df1.combine(df2, take_smaller)
     A    B     C
0  NaN  NaN   NaN
1  NaN  3.0 -10.0
2  NaN  3.0   1.0
>>> df1.combine(df2, take_smaller, overwrite=False)
     A    B     C
0  0.0  NaN   NaN
1  0.0  3.0 -10.0
2  NaN  3.0   1.0

Demonstrating the preference of the passed in dataframe.

>>> df2 = pd.DataFrame({'B': [3, 3], 'C': [1, 1], }, index=[1, 2])
>>> df2.combine(df1, take_smaller)
   A    B   C
0  0.0  NaN NaN
1  0.0  3.0 NaN
2  NaN  3.0 NaN
>>> df2.combine(df1, take_smaller, overwrite=False)
     A    B   C
0  0.0  NaN NaN
1  0.0  3.0 1.0
2  NaN  3.0 1.0
Scroll To Top