pandas.Index.get_duplicates¶
-
Index.
get_duplicates
(self)[source]¶ Extract duplicated index elements.
Deprecated since version 0.23.0: Use idx[idx.duplicated()].unique() instead
Returns a sorted list of index elements which appear more than once in the index.
Returns: - array-like
List of duplicated indexes.
See also
Index.duplicated
- Return boolean array denoting duplicates.
Index.drop_duplicates
- Return Index with duplicates removed.
Examples
Works on different Index of types.
>>> pd.Index([1, 2, 2, 3, 3, 3, 4]).get_duplicates() # doctest: +SKIP [2, 3]
Note that for a DatetimeIndex, it does not return a list but a new DatetimeIndex:
>>> dates = pd.to_datetime(['2018-01-01', '2018-01-02', '2018-01-03', ... '2018-01-03', '2018-01-04', '2018-01-04'], ... format='%Y-%m-%d') >>> pd.Index(dates).get_duplicates() # doctest: +SKIP DatetimeIndex(['2018-01-03', '2018-01-04'], dtype='datetime64[ns]', freq=None)
Sorts duplicated elements even when indexes are unordered.
>>> pd.Index([1, 2, 3, 2, 3, 4, 3]).get_duplicates() # doctest: +SKIP [2, 3]
Return empty array-like structure when all elements are unique.
>>> pd.Index([1, 2, 3, 4]).get_duplicates() # doctest: +SKIP [] >>> dates = pd.to_datetime(['2018-01-01', '2018-01-02', '2018-01-03'], ... format='%Y-%m-%d') >>> pd.Index(dates).get_duplicates() # doctest: +SKIP DatetimeIndex([], dtype='datetime64[ns]', freq=None)