pandas.DataFrame.plot¶
- DataFrame.plot(frame=None, subplots=False, sharex=True, sharey=False, use_index=True, figsize=None, grid=False, legend=True, rot=None, ax=None, title=None, xlim=None, ylim=None, logy=False, xticks=None, yticks=None, kind='line', sort_columns=False, fontsize=None, secondary_y=False, **kwds)¶
Make line or bar plot of DataFrame’s series with the index on the x-axis using matplotlib / pylab.
Parameters : subplots : boolean, default False
Make separate subplots for each time series
sharex : boolean, default True
In case subplots=True, share x axis
sharey : boolean, default False
In case subplots=True, share y axis
use_index : boolean, default True
Use index as ticks for x axis
stacked : boolean, default False
If True, create stacked bar plot. Only valid for DataFrame input
sort_columns: boolean, default False :
Sort column names to determine plot ordering
title : string
Title to use for the plot
grid : boolean, default True
Axis grid lines
legend : boolean, default True
Place legend on axis subplots
ax : matplotlib axis object, default None
kind : {‘line’, ‘bar’, ‘barh’}
bar : vertical bar plot barh : horizontal bar plot
logy : boolean, default False
For line plots, use log scaling on y axis
xticks : sequence
Values to use for the xticks
yticks : sequence
Values to use for the yticks
xlim : 2-tuple/list
ylim : 2-tuple/list
rot : int, default None
Rotation for ticks
secondary_y : boolean or sequence, default False
Whether to plot on the secondary y-axis If dict then can select which columns to plot on secondary y-axis
kwds : keywords
Options to pass to matplotlib plotting method
Returns : ax_or_axes : matplotlib.AxesSubplot or list of them