pandas.DataFrame.truncate

DataFrame.truncate(self: ~FrameOrSeries, before=None, after=None, axis=None, copy: bool = True) → ~FrameOrSeries[source]

Truncate a Series or DataFrame before and after some index value.

This is a useful shorthand for boolean indexing based on index values above or below certain thresholds.

Parameters
beforedate, str, int

Truncate all rows before this index value.

afterdate, str, int

Truncate all rows after this index value.

axis{0 or ‘index’, 1 or ‘columns’}, optional

Axis to truncate. Truncates the index (rows) by default.

copybool, default is True,

Return a copy of the truncated section.

Returns
type of caller

The truncated Series or DataFrame.

See also

DataFrame.loc

Select a subset of a DataFrame by label.

DataFrame.iloc

Select a subset of a DataFrame by position.

Notes

If the index being truncated contains only datetime values, before and after may be specified as strings instead of Timestamps.

Examples

>>> df = pd.DataFrame({'A': ['a', 'b', 'c', 'd', 'e'],
...                    'B': ['f', 'g', 'h', 'i', 'j'],
...                    'C': ['k', 'l', 'm', 'n', 'o']},
...                   index=[1, 2, 3, 4, 5])
>>> df
   A  B  C
1  a  f  k
2  b  g  l
3  c  h  m
4  d  i  n
5  e  j  o
>>> df.truncate(before=2, after=4)
   A  B  C
2  b  g  l
3  c  h  m
4  d  i  n

The columns of a DataFrame can be truncated.

>>> df.truncate(before="A", after="B", axis="columns")
   A  B
1  a  f
2  b  g
3  c  h
4  d  i
5  e  j

For Series, only rows can be truncated.

>>> df['A'].truncate(before=2, after=4)
2    b
3    c
4    d
Name: A, dtype: object

The index values in truncate can be datetimes or string dates.

>>> dates = pd.date_range('2016-01-01', '2016-02-01', freq='s')
>>> df = pd.DataFrame(index=dates, data={'A': 1})
>>> df.tail()
                     A
2016-01-31 23:59:56  1
2016-01-31 23:59:57  1
2016-01-31 23:59:58  1
2016-01-31 23:59:59  1
2016-02-01 00:00:00  1
>>> df.truncate(before=pd.Timestamp('2016-01-05'),
...             after=pd.Timestamp('2016-01-10')).tail()
                     A
2016-01-09 23:59:56  1
2016-01-09 23:59:57  1
2016-01-09 23:59:58  1
2016-01-09 23:59:59  1
2016-01-10 00:00:00  1

Because the index is a DatetimeIndex containing only dates, we can specify before and after as strings. They will be coerced to Timestamps before truncation.

>>> df.truncate('2016-01-05', '2016-01-10').tail()
                     A
2016-01-09 23:59:56  1
2016-01-09 23:59:57  1
2016-01-09 23:59:58  1
2016-01-09 23:59:59  1
2016-01-10 00:00:00  1

Note that truncate assumes a 0 value for any unspecified time component (midnight). This differs from partial string slicing, which returns any partially matching dates.

>>> df.loc['2016-01-05':'2016-01-10', :].tail()
                     A
2016-01-10 23:59:55  1
2016-01-10 23:59:56  1
2016-01-10 23:59:57  1
2016-01-10 23:59:58  1
2016-01-10 23:59:59  1