pandas.
notnull
Detect non-missing values for an array-like object.
This function takes a scalar or array-like object and indicates whether values are valid (not missing, which is NaN in numeric arrays, None or NaN in object arrays, NaT in datetimelike).
NaN
None
NaT
Object to check for not null or non-missing values.
For scalar input, returns a scalar boolean. For array input, returns an array of boolean indicating whether each corresponding element is valid.
See also
isna
Boolean inverse of pandas.notna.
Series.notna
Detect valid values in a Series.
DataFrame.notna
Detect valid values in a DataFrame.
Index.notna
Detect valid values in an Index.
Examples
Scalar arguments (including strings) result in a scalar boolean.
>>> pd.notna('dog') True
>>> pd.notna(pd.NA) False
>>> pd.notna(np.nan) False
ndarrays result in an ndarray of booleans.
>>> array = np.array([[1, np.nan, 3], [4, 5, np.nan]]) >>> array array([[ 1., nan, 3.], [ 4., 5., nan]]) >>> pd.notna(array) array([[ True, False, True], [ True, True, False]])
For indexes, an ndarray of booleans is returned.
>>> index = pd.DatetimeIndex(["2017-07-05", "2017-07-06", None, ... "2017-07-08"]) >>> index DatetimeIndex(['2017-07-05', '2017-07-06', 'NaT', '2017-07-08'], dtype='datetime64[ns]', freq=None) >>> pd.notna(index) array([ True, True, False, True])
For Series and DataFrame, the same type is returned, containing booleans.
>>> df = pd.DataFrame([['ant', 'bee', 'cat'], ['dog', None, 'fly']]) >>> df 0 1 2 0 ant bee cat 1 dog None fly >>> pd.notna(df) 0 1 2 0 True True True 1 True False True
>>> pd.notna(df[1]) 0 True 1 False Name: 1, dtype: bool