pandas.
to_timedelta
Convert argument to timedelta.
Timedeltas are absolute differences in times, expressed in difference units (e.g. days, hours, minutes, seconds). This method converts an argument from a recognized timedelta format / value into a Timedelta type.
The data to be converted to timedelta.
Deprecated since version 1.2: Strings with units ‘M’, ‘Y’ and ‘y’ do not represent unambiguous timedelta values and will be removed in a future version
Denotes the unit of the arg for numeric arg. Defaults to "ns".
"ns"
Possible values:
‘W’
‘D’ / ‘days’ / ‘day’
‘hours’ / ‘hour’ / ‘hr’ / ‘h’
‘m’ / ‘minute’ / ‘min’ / ‘minutes’ / ‘T’
‘S’ / ‘seconds’ / ‘sec’ / ‘second’
‘ms’ / ‘milliseconds’ / ‘millisecond’ / ‘milli’ / ‘millis’ / ‘L’
‘us’ / ‘microseconds’ / ‘microsecond’ / ‘micro’ / ‘micros’ / ‘U’
‘ns’ / ‘nanoseconds’ / ‘nano’ / ‘nanos’ / ‘nanosecond’ / ‘N’
Changed in version 1.1.0: Must not be specified when arg context strings and errors="raise".
errors="raise"
If ‘raise’, then invalid parsing will raise an exception.
If ‘coerce’, then invalid parsing will be set as NaT.
If ‘ignore’, then invalid parsing will return the input.
Output type returned if parsing succeeded.
See also
DataFrame.astype
Cast argument to a specified dtype.
to_datetime
Convert argument to datetime.
convert_dtypes
Convert dtypes.
Notes
If the precision is higher than nanoseconds, the precision of the duration is truncated to nanoseconds for string inputs.
Examples
Parsing a single string to a Timedelta:
>>> pd.to_timedelta('1 days 06:05:01.00003') Timedelta('1 days 06:05:01.000030') >>> pd.to_timedelta('15.5us') Timedelta('0 days 00:00:00.000015500')
Parsing a list or array of strings:
>>> pd.to_timedelta(['1 days 06:05:01.00003', '15.5us', 'nan']) TimedeltaIndex(['1 days 06:05:01.000030', '0 days 00:00:00.000015500', NaT], dtype='timedelta64[ns]', freq=None)
Converting numbers by specifying the unit keyword argument:
>>> pd.to_timedelta(np.arange(5), unit='s') TimedeltaIndex(['0 days 00:00:00', '0 days 00:00:01', '0 days 00:00:02', '0 days 00:00:03', '0 days 00:00:04'], dtype='timedelta64[ns]', freq=None) >>> pd.to_timedelta(np.arange(5), unit='d') TimedeltaIndex(['0 days', '1 days', '2 days', '3 days', '4 days'], dtype='timedelta64[ns]', freq=None)