pandas.read_hdf¶
- pandas.read_hdf(path_or_buf, key=None, mode='r', errors='strict', where=None, start=None, stop=None, columns=None, iterator=False, chunksize=None, **kwargs)[source]¶
 Read from the store, close it if we opened it.
Retrieve pandas object stored in file, optionally based on where criteria.
Warning
Pandas uses PyTables for reading and writing HDF5 files, which allows serializing object-dtype data with pickle when using the “fixed” format. Loading pickled data received from untrusted sources can be unsafe.
See: https://docs.python.org/3/library/pickle.html for more.
- Parameters
 - path_or_bufstr, path object, pandas.HDFStore
 Any valid string path is acceptable. Only supports the local file system, remote URLs and file-like objects are not supported.
If you want to pass in a path object, pandas accepts any
os.PathLike.Alternatively, pandas accepts an open
pandas.HDFStoreobject.- keyobject, optional
 The group identifier in the store. Can be omitted if the HDF file contains a single pandas object.
- mode{‘r’, ‘r+’, ‘a’}, default ‘r’
 Mode to use when opening the file. Ignored if path_or_buf is a
pandas.HDFStore. Default is ‘r’.- errorsstr, default ‘strict’
 Specifies how encoding and decoding errors are to be handled. See the errors argument for
open()for a full list of options.- wherelist, optional
 A list of Term (or convertible) objects.
- startint, optional
 Row number to start selection.
- stopint, optional
 Row number to stop selection.
- columnslist, optional
 A list of columns names to return.
- iteratorbool, optional
 Return an iterator object.
- chunksizeint, optional
 Number of rows to include in an iteration when using an iterator.
- **kwargs
 Additional keyword arguments passed to HDFStore.
- Returns
 - itemobject
 The selected object. Return type depends on the object stored.
See also
DataFrame.to_hdfWrite a HDF file from a DataFrame.
HDFStoreLow-level access to HDF files.
Examples
>>> df = pd.DataFrame([[1, 1.0, 'a']], columns=['x', 'y', 'z']) >>> df.to_hdf('./store.h5', 'data') >>> reread = pd.read_hdf('./store.h5')