pandas.Index.duplicated#
- Index.duplicated(keep='first')[source]#
Indicate duplicate index values.
Duplicated values are indicated as
True
values in the resulting array. Either all duplicates, all except the first, or all except the last occurrence of duplicates can be indicated.- Parameters
- keep{‘first’, ‘last’, False}, default ‘first’
The value or values in a set of duplicates to mark as missing.
‘first’ : Mark duplicates as
True
except for the first occurrence.‘last’ : Mark duplicates as
True
except for the last occurrence.False
: Mark all duplicates asTrue
.
- Returns
- np.ndarray[bool]
See also
Series.duplicated
Equivalent method on pandas.Series.
DataFrame.duplicated
Equivalent method on pandas.DataFrame.
Index.drop_duplicates
Remove duplicate values from Index.
Examples
By default, for each set of duplicated values, the first occurrence is set to False and all others to True:
>>> idx = pd.Index(['lama', 'cow', 'lama', 'beetle', 'lama']) >>> idx.duplicated() array([False, False, True, False, True])
which is equivalent to
>>> idx.duplicated(keep='first') array([False, False, True, False, True])
By using ‘last’, the last occurrence of each set of duplicated values is set on False and all others on True:
>>> idx.duplicated(keep='last') array([ True, False, True, False, False])
By setting keep on
False
, all duplicates are True:>>> idx.duplicated(keep=False) array([ True, False, True, False, True])