pandas.Index.notnull#
- Index.notnull()[source]#
- Detect existing (non-missing) values. - Return a boolean same-sized object indicating if the values are not NA. Non-missing values get mapped to - True. Characters such as empty strings- ''or- numpy.infare not considered NA values (unless you set- pandas.options.mode.use_inf_as_na = True). NA values, such as None or- numpy.NaN, get mapped to- Falsevalues.- Returns
- numpy.ndarray[bool]
- Boolean array to indicate which entries are not NA. 
 
 - See also - Index.notnull
- Alias of notna. 
- Index.isna
- Inverse of notna. 
- notna
- Top-level notna. 
 - Examples - Show which entries in an Index are not NA. The result is an array. - >>> idx = pd.Index([5.2, 6.0, np.NaN]) >>> idx Float64Index([5.2, 6.0, nan], dtype='float64') >>> idx.notna() array([ True, True, False]) - Empty strings are not considered NA values. None is considered a NA value. - >>> idx = pd.Index(['black', '', 'red', None]) >>> idx Index(['black', '', 'red', None], dtype='object') >>> idx.notna() array([ True, True, True, False])