pandas.Index.sort_values#

Index.sort_values(return_indexer=False, ascending=True, na_position='last', key=None)[source]#

Return a sorted copy of the index.

Return a sorted copy of the index, and optionally return the indices that sorted the index itself.

Parameters
return_indexerbool, default False

Should the indices that would sort the index be returned.

ascendingbool, default True

Should the index values be sorted in an ascending order.

na_position{‘first’ or ‘last’}, default ‘last’

Argument ‘first’ puts NaNs at the beginning, ‘last’ puts NaNs at the end.

New in version 1.2.0.

keycallable, optional

If not None, apply the key function to the index values before sorting. This is similar to the key argument in the builtin sorted() function, with the notable difference that this key function should be vectorized. It should expect an Index and return an Index of the same shape.

New in version 1.1.0.

Returns
sorted_indexpandas.Index

Sorted copy of the index.

indexernumpy.ndarray, optional

The indices that the index itself was sorted by.

See also

Series.sort_values

Sort values of a Series.

DataFrame.sort_values

Sort values in a DataFrame.

Examples

>>> idx = pd.Index([10, 100, 1, 1000])
>>> idx
Int64Index([10, 100, 1, 1000], dtype='int64')

Sort values in ascending order (default behavior).

>>> idx.sort_values()
Int64Index([1, 10, 100, 1000], dtype='int64')

Sort values in descending order, and also get the indices idx was sorted by.

>>> idx.sort_values(ascending=False, return_indexer=True)
(Int64Index([1000, 100, 10, 1], dtype='int64'), array([3, 1, 0, 2]))