pandas.to_timedelta#
- pandas.to_timedelta(arg, unit=None, errors='raise')[source]#
- Convert argument to timedelta. - Timedeltas are absolute differences in times, expressed in difference units (e.g. days, hours, minutes, seconds). This method converts an argument from a recognized timedelta format / value into a Timedelta type. - Parameters
- argstr, timedelta, list-like or Series
- The data to be converted to timedelta. - Deprecated since version 1.2: Strings with units ‘M’, ‘Y’ and ‘y’ do not represent unambiguous timedelta values and will be removed in a future version 
- unitstr, optional
- Denotes the unit of the arg for numeric arg. Defaults to - "ns".- Possible values: - ‘W’ 
- ‘D’ / ‘days’ / ‘day’ 
- ‘hours’ / ‘hour’ / ‘hr’ / ‘h’ 
- ‘m’ / ‘minute’ / ‘min’ / ‘minutes’ / ‘T’ 
- ‘S’ / ‘seconds’ / ‘sec’ / ‘second’ 
- ‘ms’ / ‘milliseconds’ / ‘millisecond’ / ‘milli’ / ‘millis’ / ‘L’ 
- ‘us’ / ‘microseconds’ / ‘microsecond’ / ‘micro’ / ‘micros’ / ‘U’ 
- ‘ns’ / ‘nanoseconds’ / ‘nano’ / ‘nanos’ / ‘nanosecond’ / ‘N’ 
 - Changed in version 1.1.0: Must not be specified when arg context strings and - errors="raise".
- errors{‘ignore’, ‘raise’, ‘coerce’}, default ‘raise’
- If ‘raise’, then invalid parsing will raise an exception. 
- If ‘coerce’, then invalid parsing will be set as NaT. 
- If ‘ignore’, then invalid parsing will return the input. 
 
 
- Returns
- timedelta
- If parsing succeeded. Return type depends on input: - list-like: TimedeltaIndex of timedelta64 dtype 
- Series: Series of timedelta64 dtype 
- scalar: Timedelta 
 
 
 - See also - DataFrame.astype
- Cast argument to a specified dtype. 
- to_datetime
- Convert argument to datetime. 
- convert_dtypes
- Convert dtypes. 
 - Notes - If the precision is higher than nanoseconds, the precision of the duration is truncated to nanoseconds for string inputs. - Examples - Parsing a single string to a Timedelta: - >>> pd.to_timedelta('1 days 06:05:01.00003') Timedelta('1 days 06:05:01.000030') >>> pd.to_timedelta('15.5us') Timedelta('0 days 00:00:00.000015500') - Parsing a list or array of strings: - >>> pd.to_timedelta(['1 days 06:05:01.00003', '15.5us', 'nan']) TimedeltaIndex(['1 days 06:05:01.000030', '0 days 00:00:00.000015500', NaT], dtype='timedelta64[ns]', freq=None) - Converting numbers by specifying the unit keyword argument: - >>> pd.to_timedelta(np.arange(5), unit='s') TimedeltaIndex(['0 days 00:00:00', '0 days 00:00:01', '0 days 00:00:02', '0 days 00:00:03', '0 days 00:00:04'], dtype='timedelta64[ns]', freq=None) >>> pd.to_timedelta(np.arange(5), unit='d') TimedeltaIndex(['0 days', '1 days', '2 days', '3 days', '4 days'], dtype='timedelta64[ns]', freq=None)