pandas.notnull#
- pandas.notnull(obj)[source]#
Detect non-missing values for an array-like object.
This function takes a scalar or array-like object and indicates whether values are valid (not missing, which is
NaN
in numeric arrays,None
orNaN
in object arrays,NaT
in datetimelike).- Parameters
- objarray-like or object value
Object to check for not null or non-missing values.
- Returns
- bool or array-like of bool
For scalar input, returns a scalar boolean. For array input, returns an array of boolean indicating whether each corresponding element is valid.
See also
isna
Boolean inverse of pandas.notna.
Series.notna
Detect valid values in a Series.
DataFrame.notna
Detect valid values in a DataFrame.
Index.notna
Detect valid values in an Index.
Examples
Scalar arguments (including strings) result in a scalar boolean.
>>> pd.notna('dog') True
>>> pd.notna(pd.NA) False
>>> pd.notna(np.nan) False
ndarrays result in an ndarray of booleans.
>>> array = np.array([[1, np.nan, 3], [4, 5, np.nan]]) >>> array array([[ 1., nan, 3.], [ 4., 5., nan]]) >>> pd.notna(array) array([[ True, False, True], [ True, True, False]])
For indexes, an ndarray of booleans is returned.
>>> index = pd.DatetimeIndex(["2017-07-05", "2017-07-06", None, ... "2017-07-08"]) >>> index DatetimeIndex(['2017-07-05', '2017-07-06', 'NaT', '2017-07-08'], dtype='datetime64[ns]', freq=None) >>> pd.notna(index) array([ True, True, False, True])
For Series and DataFrame, the same type is returned, containing booleans.
>>> df = pd.DataFrame([['ant', 'bee', 'cat'], ['dog', None, 'fly']]) >>> df 0 1 2 0 ant bee cat 1 dog None fly >>> pd.notna(df) 0 1 2 0 True True True 1 True False True
>>> pd.notna(df[1]) 0 True 1 False Name: 1, dtype: bool