pandas.unique#
- pandas.unique(values)[source]#
- Return unique values based on a hash table. - Uniques are returned in order of appearance. This does NOT sort. - Significantly faster than numpy.unique for long enough sequences. Includes NA values. - Parameters
- values1d array-like
 
- Returns
- numpy.ndarray or ExtensionArray
- The return can be: - Index : when the input is an Index 
- Categorical : when the input is a Categorical dtype 
- ndarray : when the input is a Series/ndarray 
 - Return numpy.ndarray or ExtensionArray. 
 
 - See also - Index.unique
- Return unique values from an Index. 
- Series.unique
- Return unique values of Series object. 
 - Examples - >>> pd.unique(pd.Series([2, 1, 3, 3])) array([2, 1, 3]) - >>> pd.unique(pd.Series([2] + [1] * 5)) array([2, 1]) - >>> pd.unique(pd.Series([pd.Timestamp("20160101"), pd.Timestamp("20160101")])) array(['2016-01-01T00:00:00.000000000'], dtype='datetime64[ns]') - >>> pd.unique( ... pd.Series( ... [ ... pd.Timestamp("20160101", tz="US/Eastern"), ... pd.Timestamp("20160101", tz="US/Eastern"), ... ] ... ) ... ) <DatetimeArray> ['2016-01-01 00:00:00-05:00'] Length: 1, dtype: datetime64[ns, US/Eastern] - >>> pd.unique( ... pd.Index( ... [ ... pd.Timestamp("20160101", tz="US/Eastern"), ... pd.Timestamp("20160101", tz="US/Eastern"), ... ] ... ) ... ) DatetimeIndex(['2016-01-01 00:00:00-05:00'], dtype='datetime64[ns, US/Eastern]', freq=None) - >>> pd.unique(list("baabc")) array(['b', 'a', 'c'], dtype=object) - An unordered Categorical will return categories in the order of appearance. - >>> pd.unique(pd.Series(pd.Categorical(list("baabc")))) ['b', 'a', 'c'] Categories (3, object): ['a', 'b', 'c'] - >>> pd.unique(pd.Series(pd.Categorical(list("baabc"), categories=list("abc")))) ['b', 'a', 'c'] Categories (3, object): ['a', 'b', 'c'] - An ordered Categorical preserves the category ordering. - >>> pd.unique( ... pd.Series( ... pd.Categorical(list("baabc"), categories=list("abc"), ordered=True) ... ) ... ) ['b', 'a', 'c'] Categories (3, object): ['a' < 'b' < 'c'] - An array of tuples - >>> pd.unique([("a", "b"), ("b", "a"), ("a", "c"), ("b", "a")]) array([('a', 'b'), ('b', 'a'), ('a', 'c')], dtype=object)