pandas.unique#

pandas.unique(values)[source]#

Return unique values based on a hash table.

Uniques are returned in order of appearance. This does NOT sort.

Significantly faster than numpy.unique for long enough sequences. Includes NA values.

Parameters
values1d array-like
Returns
numpy.ndarray or ExtensionArray

The return can be:

  • Index : when the input is an Index

  • Categorical : when the input is a Categorical dtype

  • ndarray : when the input is a Series/ndarray

Return numpy.ndarray or ExtensionArray.

See also

Index.unique

Return unique values from an Index.

Series.unique

Return unique values of Series object.

Examples

>>> pd.unique(pd.Series([2, 1, 3, 3]))
array([2, 1, 3])
>>> pd.unique(pd.Series([2] + [1] * 5))
array([2, 1])
>>> pd.unique(pd.Series([pd.Timestamp("20160101"), pd.Timestamp("20160101")]))
array(['2016-01-01T00:00:00.000000000'], dtype='datetime64[ns]')
>>> pd.unique(
...     pd.Series(
...         [
...             pd.Timestamp("20160101", tz="US/Eastern"),
...             pd.Timestamp("20160101", tz="US/Eastern"),
...         ]
...     )
... )
<DatetimeArray>
['2016-01-01 00:00:00-05:00']
Length: 1, dtype: datetime64[ns, US/Eastern]
>>> pd.unique(
...     pd.Index(
...         [
...             pd.Timestamp("20160101", tz="US/Eastern"),
...             pd.Timestamp("20160101", tz="US/Eastern"),
...         ]
...     )
... )
DatetimeIndex(['2016-01-01 00:00:00-05:00'],
        dtype='datetime64[ns, US/Eastern]',
        freq=None)
>>> pd.unique(list("baabc"))
array(['b', 'a', 'c'], dtype=object)

An unordered Categorical will return categories in the order of appearance.

>>> pd.unique(pd.Series(pd.Categorical(list("baabc"))))
['b', 'a', 'c']
Categories (3, object): ['a', 'b', 'c']
>>> pd.unique(pd.Series(pd.Categorical(list("baabc"), categories=list("abc"))))
['b', 'a', 'c']
Categories (3, object): ['a', 'b', 'c']

An ordered Categorical preserves the category ordering.

>>> pd.unique(
...     pd.Series(
...         pd.Categorical(list("baabc"), categories=list("abc"), ordered=True)
...     )
... )
['b', 'a', 'c']
Categories (3, object): ['a' < 'b' < 'c']

An array of tuples

>>> pd.unique([("a", "b"), ("b", "a"), ("a", "c"), ("b", "a")])
array([('a', 'b'), ('b', 'a'), ('a', 'c')], dtype=object)