pandas.DataFrame.values#
- property DataFrame.values[source]#
Return a Numpy representation of the DataFrame.
Warning
We recommend using
DataFrame.to_numpy()
instead.Only the values in the DataFrame will be returned, the axes labels will be removed.
- Returns
- numpy.ndarray
The values of the DataFrame.
See also
DataFrame.to_numpy
Recommended alternative to this method.
DataFrame.index
Retrieve the index labels.
DataFrame.columns
Retrieving the column names.
Notes
The dtype will be a lower-common-denominator dtype (implicit upcasting); that is to say if the dtypes (even of numeric types) are mixed, the one that accommodates all will be chosen. Use this with care if you are not dealing with the blocks.
e.g. If the dtypes are float16 and float32, dtype will be upcast to float32. If dtypes are int32 and uint8, dtype will be upcast to int32. By
numpy.find_common_type()
convention, mixing int64 and uint64 will result in a float64 dtype.Examples
A DataFrame where all columns are the same type (e.g., int64) results in an array of the same type.
>>> df = pd.DataFrame({'age': [ 3, 29], ... 'height': [94, 170], ... 'weight': [31, 115]}) >>> df age height weight 0 3 94 31 1 29 170 115 >>> df.dtypes age int64 height int64 weight int64 dtype: object >>> df.values array([[ 3, 94, 31], [ 29, 170, 115]])
A DataFrame with mixed type columns(e.g., str/object, int64, float32) results in an ndarray of the broadest type that accommodates these mixed types (e.g., object).
>>> df2 = pd.DataFrame([('parrot', 24.0, 'second'), ... ('lion', 80.5, 1), ... ('monkey', np.nan, None)], ... columns=('name', 'max_speed', 'rank')) >>> df2.dtypes name object max_speed float64 rank object dtype: object >>> df2.values array([['parrot', 24.0, 'second'], ['lion', 80.5, 1], ['monkey', nan, None]], dtype=object)