pandas.Series.dropna#
- Series.dropna(*, axis=0, inplace=False, how=None, ignore_index=False)[source]#
- Return a new Series with missing values removed. - See the User Guide for more on which values are considered missing, and how to work with missing data. - Parameters
- axis{0 or ‘index’}
- Unused. Parameter needed for compatibility with DataFrame. 
- inplacebool, default False
- If True, do operation inplace and return None. 
- howstr, optional
- Not in use. Kept for compatibility. 
- ignore_indexbool, default False
- If - True, the resulting axis will be labeled 0, 1, …, n - 1.- New in version 2.0.0. 
 
- Returns
- Series or None
- Series with NA entries dropped from it or None if - inplace=True.
 
 - See also - Series.isna
- Indicate missing values. 
- Series.notna
- Indicate existing (non-missing) values. 
- Series.fillna
- Replace missing values. 
- DataFrame.dropna
- Drop rows or columns which contain NA values. 
- Index.dropna
- Drop missing indices. 
 - Examples - >>> ser = pd.Series([1., 2., np.nan]) >>> ser 0 1.0 1 2.0 2 NaN dtype: float64 - Drop NA values from a Series. - >>> ser.dropna() 0 1.0 1 2.0 dtype: float64 - Empty strings are not considered NA values. - Noneis considered an NA value.- >>> ser = pd.Series([np.NaN, 2, pd.NaT, '', None, 'I stay']) >>> ser 0 NaN 1 2 2 NaT 3 4 None 5 I stay dtype: object >>> ser.dropna() 1 2 3 5 I stay dtype: object