pandas.Series.to_numpy#
- Series.to_numpy(dtype=None, copy=False, na_value=_NoDefault.no_default, **kwargs)[source]#
- A NumPy ndarray representing the values in this Series or Index. - Parameters
- dtypestr or numpy.dtype, optional
- The dtype to pass to - numpy.asarray().
- copybool, default False
- Whether to ensure that the returned value is not a view on another array. Note that - copy=Falsedoes not ensure that- to_numpy()is no-copy. Rather,- copy=Trueensure that a copy is made, even if not strictly necessary.
- na_valueAny, optional
- The value to use for missing values. The default value depends on dtype and the type of the array. 
- **kwargs
- Additional keywords passed through to the - to_numpymethod of the underlying array (for extension arrays).
 
- Returns
- numpy.ndarray
 
 - See also - Series.array
- Get the actual data stored within. 
- Index.array
- Get the actual data stored within. 
- DataFrame.to_numpy
- Similar method for DataFrame. 
 - Notes - The returned array will be the same up to equality (values equal in self will be equal in the returned array; likewise for values that are not equal). When self contains an ExtensionArray, the dtype may be different. For example, for a category-dtype Series, - to_numpy()will return a NumPy array and the categorical dtype will be lost.- For NumPy dtypes, this will be a reference to the actual data stored in this Series or Index (assuming - copy=False). Modifying the result in place will modify the data stored in the Series or Index (not that we recommend doing that).- For extension types, - to_numpy()may require copying data and coercing the result to a NumPy type (possibly object), which may be expensive. When you need a no-copy reference to the underlying data,- Series.arrayshould be used instead.- This table lays out the different dtypes and default return types of - to_numpy()for various dtypes within pandas.- dtype - array type - category[T] - ndarray[T] (same dtype as input) - period - ndarray[object] (Periods) - interval - ndarray[object] (Intervals) - IntegerNA - ndarray[object] - datetime64[ns] - datetime64[ns] - datetime64[ns, tz] - ndarray[object] (Timestamps) - Examples - >>> ser = pd.Series(pd.Categorical(['a', 'b', 'a'])) >>> ser.to_numpy() array(['a', 'b', 'a'], dtype=object) - Specify the dtype to control how datetime-aware data is represented. Use - dtype=objectto return an ndarray of pandas- Timestampobjects, each with the correct- tz.- >>> ser = pd.Series(pd.date_range('2000', periods=2, tz="CET")) >>> ser.to_numpy(dtype=object) array([Timestamp('2000-01-01 00:00:00+0100', tz='CET'), Timestamp('2000-01-02 00:00:00+0100', tz='CET')], dtype=object) - Or - dtype='datetime64[ns]'to return an ndarray of native datetime64 values. The values are converted to UTC and the timezone info is dropped.- >>> ser.to_numpy(dtype="datetime64[ns]") ... array(['1999-12-31T23:00:00.000000000', '2000-01-01T23:00:00...'], dtype='datetime64[ns]')