pandas.Series.rename_axis#
- Series.rename_axis(mapper=_NoDefault.no_default, *, index=_NoDefault.no_default, axis=0, copy=True, inplace=False)[source]#
- Set the name of the axis for the index or columns. - Parameters
- mapperscalar, list-like, optional
- Value to set the axis name attribute. 
- index, columnsscalar, list-like, dict-like or function, optional
- A scalar, list-like, dict-like or functions transformations to apply to that axis’ values. Note that the - columnsparameter is not allowed if the object is a Series. This parameter only apply for DataFrame type objects.- Use either - mapperand- axisto specify the axis to target with- mapper, or- indexand/or- columns.
- axis{0 or ‘index’, 1 or ‘columns’}, default 0
- The axis to rename. For Series this parameter is unused and defaults to 0. 
- copybool, default None
- Also copy underlying data. 
- inplacebool, default False
- Modifies the object directly, instead of creating a new Series or DataFrame. 
 
- Returns
- Series, DataFrame, or None
- The same type as the caller or None if - inplace=True.
 
 - See also - Series.rename
- Alter Series index labels or name. 
- DataFrame.rename
- Alter DataFrame index labels or name. 
- Index.rename
- Set new names on index. 
 - Notes - DataFrame.rename_axissupports two calling conventions- (index=index_mapper, columns=columns_mapper, ...)
- (mapper, axis={'index', 'columns'}, ...)
 - The first calling convention will only modify the names of the index and/or the names of the Index object that is the columns. In this case, the parameter - copyis ignored.- The second calling convention will modify the names of the corresponding index if mapper is a list or a scalar. However, if mapper is dict-like or a function, it will use the deprecated behavior of modifying the axis labels. - We highly recommend using keyword arguments to clarify your intent. - Examples - Series - >>> s = pd.Series(["dog", "cat", "monkey"]) >>> s 0 dog 1 cat 2 monkey dtype: object >>> s.rename_axis("animal") animal 0 dog 1 cat 2 monkey dtype: object - DataFrame - >>> df = pd.DataFrame({"num_legs": [4, 4, 2], ... "num_arms": [0, 0, 2]}, ... ["dog", "cat", "monkey"]) >>> df num_legs num_arms dog 4 0 cat 4 0 monkey 2 2 >>> df = df.rename_axis("animal") >>> df num_legs num_arms animal dog 4 0 cat 4 0 monkey 2 2 >>> df = df.rename_axis("limbs", axis="columns") >>> df limbs num_legs num_arms animal dog 4 0 cat 4 0 monkey 2 2 - MultiIndex - >>> df.index = pd.MultiIndex.from_product([['mammal'], ... ['dog', 'cat', 'monkey']], ... names=['type', 'name']) >>> df limbs num_legs num_arms type name mammal dog 4 0 cat 4 0 monkey 2 2 - >>> df.rename_axis(index={'type': 'class'}) limbs num_legs num_arms class name mammal dog 4 0 cat 4 0 monkey 2 2 - >>> df.rename_axis(columns=str.upper) LIMBS num_legs num_arms type name mammal dog 4 0 cat 4 0 monkey 2 2