pandas.core.groupby.DataFrameGroupBy.fillna#
- DataFrameGroupBy.fillna(value=None, method=None, axis=None, inplace=False, limit=None, downcast=None)[source]#
Fill NA/NaN values using the specified method within groups.
- Parameters
- valuescalar, dict, Series, or DataFrame
Value to use to fill holes (e.g. 0), alternately a dict/Series/DataFrame of values specifying which value to use for each index (for a Series) or column (for a DataFrame). Values not in the dict/Series/DataFrame will not be filled. This value cannot be a list. Users wanting to use the
value
argument and notmethod
should preferDataFrame.fillna()
as this will produce the same result and be more performant.- method{{‘bfill’, ‘ffill’, None}}, default None
Method to use for filling holes.
'ffill'
will propagate the last valid observation forward within a group.'bfill'
will use next valid observation to fill the gap.- axis{0 or ‘index’, 1 or ‘columns’}
Axis along which to fill missing values. When the
DataFrameGroupBy
axis
argument is0
, usingaxis=1
here will produce the same results asDataFrame.fillna()
. When theDataFrameGroupBy
axis
argument is1
, usingaxis=0
oraxis=1
here will produce the same results.- inplacebool, default False
Broken. Do not set to True.
- limitint, default None
If method is specified, this is the maximum number of consecutive NaN values to forward/backward fill within a group. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partially filled. If method is not specified, this is the maximum number of entries along the entire axis where NaNs will be filled. Must be greater than 0 if not None.
- downcastdict, default is None
A dict of item->dtype of what to downcast if possible, or the string ‘infer’ which will try to downcast to an appropriate equal type (e.g. float64 to int64 if possible).
- Returns
- DataFrame
Object with missing values filled.
Examples
>>> df = pd.DataFrame( ... { ... "key": [0, 0, 1, 1, 1], ... "A": [np.nan, 2, np.nan, 3, np.nan], ... "B": [2, 3, np.nan, np.nan, np.nan], ... "C": [np.nan, np.nan, 2, np.nan, np.nan], ... } ... ) >>> df key A B C 0 0 NaN 2.0 NaN 1 0 2.0 3.0 NaN 2 1 NaN NaN 2.0 3 1 3.0 NaN NaN 4 1 NaN NaN NaN
Propagate non-null values forward or backward within each group along columns.
>>> df.groupby("key").fillna(method="ffill") A B C 0 NaN 2.0 NaN 1 2.0 3.0 NaN 2 NaN NaN 2.0 3 3.0 NaN 2.0 4 3.0 NaN 2.0
>>> df.groupby("key").fillna(method="bfill") A B C 0 2.0 2.0 NaN 1 2.0 3.0 NaN 2 3.0 NaN 2.0 3 3.0 NaN NaN 4 NaN NaN NaN
Propagate non-null values forward or backward within each group along rows.
>>> df.groupby([0, 0, 1, 1], axis=1).fillna(method="ffill") key A B C 0 0.0 0.0 2.0 2.0 1 0.0 2.0 3.0 3.0 2 1.0 1.0 NaN 2.0 3 1.0 3.0 NaN NaN 4 1.0 1.0 NaN NaN
>>> df.groupby([0, 0, 1, 1], axis=1).fillna(method="bfill") key A B C 0 0.0 NaN 2.0 NaN 1 0.0 2.0 3.0 NaN 2 1.0 NaN 2.0 2.0 3 1.0 3.0 NaN NaN 4 1.0 NaN NaN NaN
Only replace the first NaN element within a group along rows.
>>> df.groupby("key").fillna(method="ffill", limit=1) A B C 0 NaN 2.0 NaN 1 2.0 3.0 NaN 2 NaN NaN 2.0 3 3.0 NaN 2.0 4 3.0 NaN NaN