pandas.core.groupby.DataFrameGroupBy.quantile#
- DataFrameGroupBy.quantile(q=0.5, interpolation='linear', numeric_only=False)[source]#
- Return group values at the given quantile, a la numpy.percentile. - Parameters
- qfloat or array-like, default 0.5 (50% quantile)
- Value(s) between 0 and 1 providing the quantile(s) to compute. 
- interpolation{‘linear’, ‘lower’, ‘higher’, ‘midpoint’, ‘nearest’}
- Method to use when the desired quantile falls between two points. 
- numeric_onlybool, default False
- Include only float, int or boolean data. - New in version 1.5.0. - Changed in version 2.0.0: numeric_only now defaults to - False.
 
- Returns
- Series or DataFrame
- Return type determined by caller of GroupBy object. 
 
 - See also - Series.quantile
- Similar method for Series. 
- DataFrame.quantile
- Similar method for DataFrame. 
- numpy.percentile
- NumPy method to compute qth percentile. 
 - Examples - >>> df = pd.DataFrame([ ... ['a', 1], ['a', 2], ['a', 3], ... ['b', 1], ['b', 3], ['b', 5] ... ], columns=['key', 'val']) >>> df.groupby('key').quantile() val key a 2.0 b 3.0