pandas.core.groupby.SeriesGroupBy.unique#
- SeriesGroupBy.unique()[source]#
Return unique values of Series object.
Uniques are returned in order of appearance. Hash table-based unique, therefore does NOT sort.
- Returns
- ndarray or ExtensionArray
The unique values returned as a NumPy array. See Notes.
See also
Series.drop_duplicates
Return Series with duplicate values removed.
unique
Top-level unique method for any 1-d array-like object.
Index.unique
Return Index with unique values from an Index object.
Notes
Returns the unique values as a NumPy array. In case of an extension-array backed Series, a new
ExtensionArray
of that type with just the unique values is returned. This includesCategorical
Period
Datetime with Timezone
Datetime without Timezone
Timedelta
Interval
Sparse
IntegerNA
See Examples section.
Examples
>>> pd.Series([2, 1, 3, 3], name='A').unique() array([2, 1, 3])
>>> pd.Series([pd.Timestamp('2016-01-01') for _ in range(3)]).unique() <DatetimeArray> ['2016-01-01 00:00:00'] Length: 1, dtype: datetime64[ns]
>>> pd.Series([pd.Timestamp('2016-01-01', tz='US/Eastern') ... for _ in range(3)]).unique() <DatetimeArray> ['2016-01-01 00:00:00-05:00'] Length: 1, dtype: datetime64[ns, US/Eastern]
An Categorical will return categories in the order of appearance and with the same dtype.
>>> pd.Series(pd.Categorical(list('baabc'))).unique() ['b', 'a', 'c'] Categories (3, object): ['a', 'b', 'c'] >>> pd.Series(pd.Categorical(list('baabc'), categories=list('abc'), ... ordered=True)).unique() ['b', 'a', 'c'] Categories (3, object): ['a' < 'b' < 'c']