Version 0.21.0 (October 27, 2017)#
This is a major release from 0.20.3 and includes a number of API changes, deprecations, new features, enhancements, and performance improvements along with a large number of bug fixes. We recommend that all users upgrade to this version.
Highlights include:
- Integration with Apache Parquet, including a new top-level - read_parquet()function and- DataFrame.to_parquet()method, see here.
- New user-facing - pandas.api.types.CategoricalDtypefor specifying categoricals independent of the data, see here.
- The behavior of - sumand- prodon all-NaN Series/DataFrames is now consistent and no longer depends on whether bottleneck is installed, and- sumand- prodon empty Series now return NaN instead of 0, see here.
- Compatibility fixes for pypy, see here. 
- Additions to the - drop,- reindexand- renameAPI to make them more consistent, see here.
- Addition of the new methods - DataFrame.infer_objects(see here) and- GroupBy.pipe(see here).
- Indexing with a list of labels, where one or more of the labels is missing, is deprecated and will raise a KeyError in a future version, see here. 
Check the API Changes and deprecations before updating.
What’s new in v0.21.0
New features#
Integration with Apache Parquet file format#
Integration with Apache Parquet, including a new top-level read_parquet() and DataFrame.to_parquet() method, see here (GH15838, GH17438).
Apache Parquet provides a cross-language, binary file format for reading and writing data frames efficiently.
Parquet is designed to faithfully serialize and de-serialize DataFrame s, supporting all of the pandas
dtypes, including extension dtypes such as datetime with timezones.
This functionality depends on either the pyarrow or fastparquet library. For more details, see the IO docs on Parquet.
Method infer_objects type conversion#
The DataFrame.infer_objects() and Series.infer_objects()
methods have been added to perform dtype inference on object columns, replacing
some of the functionality of the deprecated convert_objects
method. See the documentation here
for more details. (GH11221)
This method only performs soft conversions on object columns, converting Python objects to native types, but not any coercive conversions. For example:
In [1]: df = pd.DataFrame({'A': [1, 2, 3],
   ...:                    'B': np.array([1, 2, 3], dtype='object'),
   ...:                    'C': ['1', '2', '3']})
   ...: 
In [2]: df.dtypes
Out[2]: 
A     int64
B    object
C    object
Length: 3, dtype: object
In [3]: df.infer_objects().dtypes
Out[3]: 
A     int64
B     int64
C    object
Length: 3, dtype: object
Note that column 'C' was not converted - only scalar numeric types
will be converted to a new type.  Other types of conversion should be accomplished
using the to_numeric() function (or to_datetime(), to_timedelta()).
In [4]: df = df.infer_objects()
In [5]: df['C'] = pd.to_numeric(df['C'], errors='coerce')
In [6]: df.dtypes
Out[6]: 
A    int64
B    int64
C    int64
Length: 3, dtype: object
Improved warnings when attempting to create columns#
New users are often puzzled by the relationship between column operations and
attribute access on DataFrame instances (GH7175). One specific
instance of this confusion is attempting to create a new column by setting an
attribute on the DataFrame:
In [1]: df = pd.DataFrame({'one': [1., 2., 3.]})
In [2]: df.two = [4, 5, 6]
This does not raise any obvious exceptions, but also does not create a new column:
In [3]: df
Out[3]:
    one
0  1.0
1  2.0
2  3.0
Setting a list-like data structure into a new attribute now raises a UserWarning about the potential for unexpected behavior. See Attribute Access.
Method drop now also accepts index/columns keywords#
The drop() method has gained index/columns keywords as an
alternative to specifying the axis. This is similar to the behavior of reindex
(GH12392).
For example:
In [7]: df = pd.DataFrame(np.arange(8).reshape(2, 4),
   ...:                   columns=['A', 'B', 'C', 'D'])
   ...: 
In [8]: df
Out[8]: 
   A  B  C  D
0  0  1  2  3
1  4  5  6  7
[2 rows x 4 columns]
In [9]: df.drop(['B', 'C'], axis=1)
Out[9]: 
   A  D
0  0  3
1  4  7
[2 rows x 2 columns]
# the following is now equivalent
In [10]: df.drop(columns=['B', 'C'])
Out[10]: 
   A  D
0  0  3
1  4  7
[2 rows x 2 columns]
Methods rename, reindex now also accept axis keyword#
The DataFrame.rename() and DataFrame.reindex() methods have gained
the axis keyword to specify the axis to target with the operation
(GH12392).
Here’s rename:
In [11]: df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
In [12]: df.rename(str.lower, axis='columns')
Out[12]: 
   a  b
0  1  4
1  2  5
2  3  6
[3 rows x 2 columns]
In [13]: df.rename(id, axis='index')
Out[13]: 
                A  B
93874676096416  1  4
93874676096448  2  5
93874676096480  3  6
[3 rows x 2 columns]
And reindex:
In [14]: df.reindex(['A', 'B', 'C'], axis='columns')
Out[14]: 
   A  B   C
0  1  4 NaN
1  2  5 NaN
2  3  6 NaN
[3 rows x 3 columns]
In [15]: df.reindex([0, 1, 3], axis='index')
Out[15]: 
     A    B
0  1.0  4.0
1  2.0  5.0
3  NaN  NaN
[3 rows x 2 columns]
The “index, columns” style continues to work as before.
In [16]: df.rename(index=id, columns=str.lower)
Out[16]: 
                a  b
93874676096416  1  4
93874676096448  2  5
93874676096480  3  6
[3 rows x 2 columns]
In [17]: df.reindex(index=[0, 1, 3], columns=['A', 'B', 'C'])
Out[17]: 
     A    B   C
0  1.0  4.0 NaN
1  2.0  5.0 NaN
3  NaN  NaN NaN
[3 rows x 3 columns]
We highly encourage using named arguments to avoid confusion when using either style.
CategoricalDtype for specifying categoricals#
pandas.api.types.CategoricalDtype has been added to the public API and
expanded to include the categories and ordered attributes. A
CategoricalDtype can be used to specify the set of categories and
orderedness of an array, independent of the data. This can be useful for example,
when converting string data to a Categorical (GH14711,
GH15078, GH16015, GH17643):
In [18]: from pandas.api.types import CategoricalDtype
In [19]: s = pd.Series(['a', 'b', 'c', 'a'])  # strings
In [20]: dtype = CategoricalDtype(categories=['a', 'b', 'c', 'd'], ordered=True)
In [21]: s.astype(dtype)
Out[21]: 
0    a
1    b
2    c
3    a
Length: 4, dtype: category
Categories (4, object): ['a' < 'b' < 'c' < 'd']
One place that deserves special mention is in read_csv(). Previously, with
dtype={'col': 'category'}, the returned values and categories would always
be strings.
In [22]: data = 'A,B\na,1\nb,2\nc,3'
In [23]: pd.read_csv(StringIO(data), dtype={'B': 'category'}).B.cat.categories
Out[23]: Index(['1', '2', '3'], dtype='object')
Notice the “object” dtype.
With a CategoricalDtype of all numerics, datetimes, or
timedeltas, we can automatically convert to the correct type
In [24]: dtype = {'B': CategoricalDtype([1, 2, 3])}
In [25]: pd.read_csv(StringIO(data), dtype=dtype).B.cat.categories
Out[25]: Index([1, 2, 3], dtype='int64')
The values have been correctly interpreted as integers.
The .dtype property of a Categorical, CategoricalIndex or a
Series with categorical type will now return an instance of
CategoricalDtype. While the repr has changed, str(CategoricalDtype()) is
still the string 'category'. We’ll take this moment to remind users that the
preferred way to detect categorical data is to use
pandas.api.types.is_categorical_dtype(), and not str(dtype) == 'category'.
See the CategoricalDtype docs for more.
GroupBy objects now have a pipe method#
GroupBy objects now have a pipe method, similar to the one on
DataFrame and Series, that allow for functions that take a
GroupBy to be composed in a clean, readable syntax. (GH17871)
For a concrete example on combining .groupby and .pipe , imagine having a
DataFrame with columns for stores, products, revenue and sold quantity. We’d like to
do a groupwise calculation of prices (i.e. revenue/quantity) per store and per product.
We could do this in a multi-step operation, but expressing it in terms of piping can make the
code more readable.
First we set the data:
In [26]: import numpy as np
In [27]: n = 1000
In [28]: df = pd.DataFrame({'Store': np.random.choice(['Store_1', 'Store_2'], n),
   ....:                    'Product': np.random.choice(['Product_1',
   ....:                                                 'Product_2',
   ....:                                                 'Product_3'
   ....:                                                 ], n),
   ....:                    'Revenue': (np.random.random(n) * 50 + 10).round(2),
   ....:                    'Quantity': np.random.randint(1, 10, size=n)})
   ....: 
In [29]: df.head(2)
Out[29]: 
     Store    Product  Revenue  Quantity
0  Store_2  Product_2    32.09         7
1  Store_1  Product_3    14.20         1
[2 rows x 4 columns]
Now, to find prices per store/product, we can simply do:
In [30]: (df.groupby(['Store', 'Product'])
   ....:    .pipe(lambda grp: grp.Revenue.sum() / grp.Quantity.sum())
   ....:    .unstack().round(2))
   ....: 
Out[30]: 
Product  Product_1  Product_2  Product_3
Store                                   
Store_1       6.73       6.72       7.14
Store_2       7.59       6.98       7.23
[2 rows x 3 columns]
See the documentation for more.
Categorical.rename_categories accepts a dict-like#
rename_categories() now accepts a dict-like argument for
new_categories. The previous categories are looked up in the dictionary’s
keys and replaced if found. The behavior of missing and extra keys is the same
as in DataFrame.rename().
In [31]: c = pd.Categorical(['a', 'a', 'b'])
In [32]: c.rename_categories({"a": "eh", "b": "bee"})
Out[32]: 
['eh', 'eh', 'bee']
Categories (2, object): ['eh', 'bee']
Warning
To assist with upgrading pandas, rename_categories treats Series as
list-like. Typically, Series are considered to be dict-like (e.g. in
.rename, .map). In a future version of pandas rename_categories
will change to treat them as dict-like. Follow the warning message’s
recommendations for writing future-proof code.
In [33]: c.rename_categories(pd.Series([0, 1], index=['a', 'c']))
FutureWarning: Treating Series 'new_categories' as a list-like and using the values.
In a future version, 'rename_categories' will treat Series like a dictionary.
For dict-like, use 'new_categories.to_dict()'
For list-like, use 'new_categories.values'.
Out[33]:
[0, 0, 1]
Categories (2, int64): [0, 1]
Other enhancements#
New functions or methods#
New keywords#
- Added a - skipnaparameter to- infer_dtype()to support type inference in the presence of missing values (GH17059).
- Series.to_dict()and- DataFrame.to_dict()now support an- intokeyword which allows you to specify the- collections.Mappingsubclass that you would like returned. The default is- dict, which is backwards compatible. (GH16122)
- Series.set_axis()and- DataFrame.set_axis()now support the- inplaceparameter. (GH14636)
- Series.to_pickle()and- DataFrame.to_pickle()have gained a- protocolparameter (GH16252). By default, this parameter is set to HIGHEST_PROTOCOL
- read_feather()has gained the- nthreadsparameter for multi-threaded operations (GH16359)
- DataFrame.clip()and- Series.clip()have gained an- inplaceargument. (GH15388)
- crosstab()has gained a- margins_nameparameter to define the name of the row / column that will contain the totals when- margins=True. (GH15972)
- read_json()now accepts a- chunksizeparameter that can be used when- lines=True. If- chunksizeis passed, read_json now returns an iterator which reads in- chunksizelines with each iteration. (GH17048)
- read_json()and- to_json()now accept a- compressionargument which allows them to transparently handle compressed files. (GH17798)
Various enhancements#
- Improved the import time of pandas by about 2.25x. (GH16764) 
- Support for PEP 519 – Adding a file system path protocol on most readers (e.g. - read_csv()) and writers (e.g.- DataFrame.to_csv()) (GH13823).
- Added a - __fspath__method to- pd.HDFStore,- pd.ExcelFile, and- pd.ExcelWriterto work properly with the file system path protocol (GH13823).
- The - validateargument for- merge()now checks whether a merge is one-to-one, one-to-many, many-to-one, or many-to-many. If a merge is found to not be an example of specified merge type, an exception of type- MergeErrorwill be raised. For more, see here (GH16270)
- Added support for PEP 518 ( - pyproject.toml) to the build system (GH16745)
- RangeIndex.append()now returns a- RangeIndexobject when possible (GH16212)
- Series.rename_axis()and- DataFrame.rename_axis()with- inplace=Truenow return- Nonewhile renaming the axis inplace. (GH15704)
- api.types.infer_dtype()now infers decimals. (GH15690)
- DataFrame.select_dtypes()now accepts scalar values for include/exclude as well as list-like. (GH16855)
- date_range()now accepts ‘YS’ in addition to ‘AS’ as an alias for start of year. (GH9313)
- date_range()now accepts ‘Y’ in addition to ‘A’ as an alias for end of year. (GH9313)
- DataFrame.add_prefix()and- DataFrame.add_suffix()now accept strings containing the ‘%’ character. (GH17151)
- Read/write methods that infer compression ( - read_csv(),- read_table(),- read_pickle(), and- to_pickle()) can now infer from path-like objects, such as- pathlib.Path. (GH17206)
- read_sas()now recognizes much more of the most frequently used date (datetime) formats in SAS7BDAT files. (GH15871)
- DataFrame.items()and- Series.items()are now present in both Python 2 and 3 and is lazy in all cases. (GH13918, GH17213)
- pandas.io.formats.style.Styler.where()has been implemented as a convenience for- pandas.io.formats.style.Styler.applymap(). (GH17474)
- MultiIndex.is_monotonic_decreasing()has been implemented. Previously returned- Falsein all cases. (GH16554)
- read_excel()raises- ImportErrorwith a better message if- xlrdis not installed. (GH17613)
- DataFrame.assign()will preserve the original order of- **kwargsfor Python 3.6+ users instead of sorting the column names. (GH14207)
- Series.reindex(),- DataFrame.reindex(),- Index.get_indexer()now support list-like argument for- tolerance. (GH17367)
Backwards incompatible API changes#
Dependencies have increased minimum versions#
We have updated our minimum supported versions of dependencies (GH15206, GH15543, GH15214). If installed, we now require:
Package
Minimum Version
Required
Numpy
1.9.0
X
Matplotlib
1.4.3
Scipy
0.14.0
Bottleneck
1.0.0
Additionally, support has been dropped for Python 3.4 (GH15251).
Sum/prod of all-NaN or empty Series/DataFrames is now consistently NaN#
Note
The changes described here have been partially reverted. See the v0.22.0 Whatsnew for more.
The behavior of sum and prod on all-NaN Series/DataFrames no longer depends on
whether bottleneck is installed, and return value of sum and prod on an empty Series has changed (GH9422, GH15507).
Calling sum or prod on an empty or all-NaN Series, or columns of a DataFrame, will result in NaN. See the docs.
In [33]: s = pd.Series([np.nan])
Previously WITHOUT bottleneck installed:
In [2]: s.sum()
Out[2]: np.nan
Previously WITH bottleneck:
In [2]: s.sum()
Out[2]: 0.0
New behavior, without regard to the bottleneck installation:
In [34]: s.sum()
Out[34]: 0.0
Note that this also changes the sum of an empty Series. Previously this always returned 0 regardless of a bottleneck installation:
In [1]: pd.Series([]).sum()
Out[1]: 0
but for consistency with the all-NaN case, this was changed to return NaN as well:
In [35]: pd.Series([]).sum()
Out[35]: 0
Indexing with a list with missing labels is deprecated#
Previously, selecting with a list of labels, where one or more labels were missing would always succeed, returning NaN for missing labels.
This will now show a FutureWarning. In the future this will raise a KeyError (GH15747).
This warning will trigger on a DataFrame or a Series for using .loc[]  or [[]] when passing a list-of-labels with at least 1 missing label.
See the deprecation docs.
In [36]: s = pd.Series([1, 2, 3])
In [37]: s
Out[37]: 
0    1
1    2
2    3
Length: 3, dtype: int64
Previous behavior
In [4]: s.loc[[1, 2, 3]]
Out[4]:
1    2.0
2    3.0
3    NaN
dtype: float64
Current behavior
In [4]: s.loc[[1, 2, 3]]
Passing list-likes to .loc or [] with any missing label will raise
KeyError in the future, you can use .reindex() as an alternative.
See the documentation here:
https://pandas.pydata.org/pandas-docs/stable/indexing.html#deprecate-loc-reindex-listlike
Out[4]:
1    2.0
2    3.0
3    NaN
dtype: float64
The idiomatic way to achieve selecting potentially not-found elements is via .reindex()
In [38]: s.reindex([1, 2, 3])
Out[38]: 
1    2.0
2    3.0
3    NaN
Length: 3, dtype: float64
Selection with all keys found is unchanged.
In [39]: s.loc[[1, 2]]
Out[39]: 
1    2
2    3
Length: 2, dtype: int64
NA naming changes#
In order to promote more consistency among the pandas API, we have added additional top-level
functions isna() and notna() that are aliases for isnull() and notnull().
The naming scheme is now more consistent with methods like .dropna() and .fillna(). Furthermore
in all cases where .isnull() and .notnull() methods are defined, these have additional methods
named .isna() and .notna(), these are included for classes Categorical,
Index, Series, and DataFrame. (GH15001).
The configuration option pd.options.mode.use_inf_as_null is deprecated, and pd.options.mode.use_inf_as_na is added as a replacement.
Iteration of Series/Index will now return Python scalars#
Previously, when using certain iteration methods for a Series with dtype int or float, you would receive a numpy scalar, e.g. a np.int64, rather than a Python int. Issue (GH10904) corrected this for Series.tolist() and list(Series). This change makes all iteration methods consistent, in particular, for __iter__() and .map(); note that this only affects int/float dtypes. (GH13236, GH13258, GH14216).
In [40]: s = pd.Series([1, 2, 3])
In [41]: s
Out[41]: 
0    1
1    2
2    3
Length: 3, dtype: int64
Previously:
In [2]: type(list(s)[0])
Out[2]: numpy.int64
New behavior:
In [42]: type(list(s)[0])
Out[42]: int
Furthermore this will now correctly box the results of iteration for DataFrame.to_dict() as well.
In [43]: d = {'a': [1], 'b': ['b']}
In [44]: df = pd.DataFrame(d)
Previously:
In [8]: type(df.to_dict()['a'][0])
Out[8]: numpy.int64
New behavior:
In [45]: type(df.to_dict()['a'][0])
Out[45]: int
Indexing with a Boolean Index#
Previously when passing a boolean Index to .loc, if the index of the Series/DataFrame had boolean labels,
you would get a label based selection, potentially duplicating result labels, rather than a boolean indexing selection
(where True selects elements), this was inconsistent how a boolean numpy array indexed. The new behavior is to
act like a boolean numpy array indexer. (GH17738)
Previous behavior:
In [46]: s = pd.Series([1, 2, 3], index=[False, True, False])
In [47]: s
Out[47]: 
False    1
True     2
False    3
Length: 3, dtype: int64
In [59]: s.loc[pd.Index([True, False, True])]
Out[59]:
True     2
False    1
False    3
True     2
dtype: int64
Current behavior
In [48]: s.loc[pd.Index([True, False, True])]
Out[48]: 
False    1
False    3
Length: 2, dtype: int64
Furthermore, previously if you had an index that was non-numeric (e.g. strings), then a boolean Index would raise a KeyError.
This will now be treated as a boolean indexer.
Previously behavior:
In [49]: s = pd.Series([1, 2, 3], index=['a', 'b', 'c'])
In [50]: s
Out[50]: 
a    1
b    2
c    3
Length: 3, dtype: int64
In [39]: s.loc[pd.Index([True, False, True])]
KeyError: "None of [Index([True, False, True], dtype='object')] are in the [index]"
Current behavior
In [51]: s.loc[pd.Index([True, False, True])]
Out[51]: 
a    1
c    3
Length: 2, dtype: int64
PeriodIndex resampling#
In previous versions of pandas, resampling a Series/DataFrame indexed by a PeriodIndex returned a DatetimeIndex in some cases (GH12884). Resampling to a multiplied frequency now returns a PeriodIndex (GH15944). As a minor enhancement, resampling a PeriodIndex can now handle NaT values (GH13224)
Previous behavior:
In [1]: pi = pd.period_range('2017-01', periods=12, freq='M')
In [2]: s = pd.Series(np.arange(12), index=pi)
In [3]: resampled = s.resample('2Q').mean()
In [4]: resampled
Out[4]:
2017-03-31     1.0
2017-09-30     5.5
2018-03-31    10.0
Freq: 2Q-DEC, dtype: float64
In [5]: resampled.index
Out[5]: DatetimeIndex(['2017-03-31', '2017-09-30', '2018-03-31'], dtype='datetime64[ns]', freq='2Q-DEC')
New behavior:
In [52]: pi = pd.period_range('2017-01', periods=12, freq='M')
In [53]: s = pd.Series(np.arange(12), index=pi)
In [54]: resampled = s.resample('2Q').mean()
In [55]: resampled
Out[55]: 
2017Q1    2.5
2017Q3    8.5
Freq: 2Q-DEC, Length: 2, dtype: float64
In [56]: resampled.index
Out[56]: PeriodIndex(['2017Q1', '2017Q3'], dtype='period[2Q-DEC]')
Upsampling and calling .ohlc() previously returned a Series, basically identical to calling .asfreq(). OHLC upsampling now returns a DataFrame with columns open, high, low and close (GH13083). This is consistent with downsampling and DatetimeIndex behavior.
Previous behavior:
In [1]: pi = pd.period_range(start='2000-01-01', freq='D', periods=10)
In [2]: s = pd.Series(np.arange(10), index=pi)
In [3]: s.resample('H').ohlc()
Out[3]:
2000-01-01 00:00    0.0
                ...
2000-01-10 23:00    NaN
Freq: H, Length: 240, dtype: float64
In [4]: s.resample('M').ohlc()
Out[4]:
         open  high  low  close
2000-01     0     9    0      9
New behavior:
In [57]: pi = pd.period_range(start='2000-01-01', freq='D', periods=10)
In [58]: s = pd.Series(np.arange(10), index=pi)
In [59]: s.resample('H').ohlc()
Out[59]: 
                  open  high  low  close
2000-01-01 00:00   0.0   0.0  0.0    0.0
2000-01-01 01:00   NaN   NaN  NaN    NaN
2000-01-01 02:00   NaN   NaN  NaN    NaN
2000-01-01 03:00   NaN   NaN  NaN    NaN
2000-01-01 04:00   NaN   NaN  NaN    NaN
...                ...   ...  ...    ...
2000-01-10 19:00   NaN   NaN  NaN    NaN
2000-01-10 20:00   NaN   NaN  NaN    NaN
2000-01-10 21:00   NaN   NaN  NaN    NaN
2000-01-10 22:00   NaN   NaN  NaN    NaN
2000-01-10 23:00   NaN   NaN  NaN    NaN
[240 rows x 4 columns]
In [60]: s.resample('M').ohlc()
Out[60]: 
         open  high  low  close
2000-01     0     9    0      9
[1 rows x 4 columns]
Improved error handling during item assignment in pd.eval#
eval() will now raise a ValueError when item assignment malfunctions, or
inplace operations are specified, but there is no item assignment in the expression (GH16732)
In [61]: arr = np.array([1, 2, 3])
Previously, if you attempted the following expression, you would get a not very helpful error message:
In [3]: pd.eval("a = 1 + 2", target=arr, inplace=True)
...
IndexError: only integers, slices (`:`), ellipsis (`...`), numpy.newaxis (`None`)
and integer or boolean arrays are valid indices
This is a very long way of saying numpy arrays don’t support string-item indexing. With this change, the error message is now this:
In [3]: pd.eval("a = 1 + 2", target=arr, inplace=True)
...
ValueError: Cannot assign expression output to target
It also used to be possible to evaluate expressions inplace, even if there was no item assignment:
In [4]: pd.eval("1 + 2", target=arr, inplace=True)
Out[4]: 3
However, this input does not make much sense because the output is not being assigned to
the target. Now, a ValueError will be raised when such an input is passed in:
In [4]: pd.eval("1 + 2", target=arr, inplace=True)
...
ValueError: Cannot operate inplace if there is no assignment
Dtype conversions#
Previously assignments, .where() and .fillna() with a bool assignment, would coerce to same the type (e.g. int / float), or raise for datetimelikes. These will now preserve the bools with object dtypes. (GH16821).
In [62]: s = pd.Series([1, 2, 3])
In [5]: s[1] = True
In [6]: s
Out[6]:
0    1
1    1
2    3
dtype: int64
New behavior
In [63]: s[1] = True
In [64]: s
Out[64]: 
0       1
1    True
2       3
Length: 3, dtype: object
Previously, as assignment to a datetimelike with a non-datetimelike would coerce the non-datetime-like item being assigned (GH14145).
In [65]: s = pd.Series([pd.Timestamp('2011-01-01'), pd.Timestamp('2012-01-01')])
In [1]: s[1] = 1
In [2]: s
Out[2]:
0   2011-01-01 00:00:00.000000000
1   1970-01-01 00:00:00.000000001
dtype: datetime64[ns]
These now coerce to object dtype.
In [66]: s[1] = 1
In [67]: s
Out[67]: 
0    2011-01-01 00:00:00
1                      1
Length: 2, dtype: object
MultiIndex constructor with a single level#
The MultiIndex constructors no longer squeezes a MultiIndex with all
length-one levels down to a regular Index. This affects all the
MultiIndex constructors. (GH17178)
Previous behavior:
In [2]: pd.MultiIndex.from_tuples([('a',), ('b',)])
Out[2]: Index(['a', 'b'], dtype='object')
Length 1 levels are no longer special-cased. They behave exactly as if you had
length 2+ levels, so a MultiIndex is always returned from all of the
MultiIndex constructors:
In [68]: pd.MultiIndex.from_tuples([('a',), ('b',)])
Out[68]: 
MultiIndex([('a',),
            ('b',)],
           )
UTC localization with Series#
Previously, to_datetime() did not localize datetime Series data when utc=True was passed. Now, to_datetime() will correctly localize Series with a datetime64[ns, UTC] dtype to be consistent with how list-like and Index data are handled. (GH6415).
Previous behavior
In [69]: s = pd.Series(['20130101 00:00:00'] * 3)
In [12]: pd.to_datetime(s, utc=True)
Out[12]:
0   2013-01-01
1   2013-01-01
2   2013-01-01
dtype: datetime64[ns]
New behavior
In [70]: pd.to_datetime(s, utc=True)
Out[70]: 
0   2013-01-01 00:00:00+00:00
1   2013-01-01 00:00:00+00:00
2   2013-01-01 00:00:00+00:00
Length: 3, dtype: datetime64[ns, UTC]
Additionally, DataFrames with datetime columns that were parsed by read_sql_table() and read_sql_query() will also be localized to UTC only if the original SQL columns were timezone aware datetime columns.
Consistency of range functions#
In previous versions, there were some inconsistencies between the various range functions: date_range(), bdate_range(), period_range(), timedelta_range(), and interval_range(). (GH17471).
One of the inconsistent behaviors occurred when the start, end and period parameters were all specified, potentially leading to ambiguous ranges.  When all three parameters were passed, interval_range ignored the period parameter, period_range ignored the end parameter, and the other range functions raised.  To promote consistency among the range functions, and avoid potentially ambiguous ranges, interval_range and period_range will now raise when all three parameters are passed.
Previous behavior:
 In [2]: pd.interval_range(start=0, end=4, periods=6)
 Out[2]:
 IntervalIndex([(0, 1], (1, 2], (2, 3]]
               closed='right',
               dtype='interval[int64]')
In [3]: pd.period_range(start='2017Q1', end='2017Q4', periods=6, freq='Q')
Out[3]: PeriodIndex(['2017Q1', '2017Q2', '2017Q3', '2017Q4', '2018Q1', '2018Q2'], dtype='period[Q-DEC]', freq='Q-DEC')
New behavior:
In [2]: pd.interval_range(start=0, end=4, periods=6)
---------------------------------------------------------------------------
ValueError: Of the three parameters: start, end, and periods, exactly two must be specified
In [3]: pd.period_range(start='2017Q1', end='2017Q4', periods=6, freq='Q')
---------------------------------------------------------------------------
ValueError: Of the three parameters: start, end, and periods, exactly two must be specified
Additionally, the endpoint parameter end was not included in the intervals produced by interval_range.  However, all other range functions include end in their output.  To promote consistency among the range functions, interval_range will now include end as the right endpoint of the final interval, except if freq is specified in a way which skips end.
Previous behavior:
In [4]: pd.interval_range(start=0, end=4)
Out[4]:
IntervalIndex([(0, 1], (1, 2], (2, 3]]
              closed='right',
              dtype='interval[int64]')
New behavior:
In [71]: pd.interval_range(start=0, end=4)
Out[71]: IntervalIndex([(0, 1], (1, 2], (2, 3], (3, 4]], dtype='interval[int64, right]')
No automatic Matplotlib converters#
pandas no longer registers our date, time, datetime,
datetime64, and Period converters with matplotlib when pandas is
imported. Matplotlib plot methods (plt.plot, ax.plot, …), will not
nicely format the x-axis for DatetimeIndex or PeriodIndex values. You
must explicitly register these methods:
pandas built-in Series.plot and DataFrame.plot will register these
converters on first-use (GH17710).
Note
This change has been temporarily reverted in pandas 0.21.1, for more details see here.
Other API changes#
- The Categorical constructor no longer accepts a scalar for the - categorieskeyword. (GH16022)
- Accessing a non-existent attribute on a closed - HDFStorewill now raise an- AttributeErrorrather than a- ClosedFileError(GH16301)
- read_csv()now issues a- UserWarningif the- namesparameter contains duplicates (GH17095)
- read_csv()now treats- 'null'and- 'n/a'strings as missing values by default (GH16471, GH16078)
- pandas.HDFStore’s string representation is now faster and less detailed. For the previous behavior, use- pandas.HDFStore.info(). (GH16503).
- Compression defaults in HDF stores now follow pytables standards. Default is no compression and if - complibis missing and- complevel> 0- zlibis used (GH15943)
- Index.get_indexer_non_unique()now returns a ndarray indexer rather than an- Index; this is consistent with- Index.get_indexer()(GH16819)
- Removed the - @slowdecorator from- pandas._testing, which caused issues for some downstream packages’ test suites. Use- @pytest.mark.slowinstead, which achieves the same thing (GH16850)
- Moved definition of - MergeErrorto the- pandas.errorsmodule.
- The signature of - Series.set_axis()and- DataFrame.set_axis()has been changed from- set_axis(axis, labels)to- set_axis(labels, axis=0), for consistency with the rest of the API. The old signature is deprecated and will show a- FutureWarning(GH14636)
- Series.argmin()and- Series.argmax()will now raise a- TypeErrorwhen used with- objectdtypes, instead of a- ValueError(GH13595)
- Periodis now immutable, and will now raise an- AttributeErrorwhen a user tries to assign a new value to the- ordinalor- freqattributes (GH17116).
- to_datetime()when passed a tz-aware- origin=kwarg will now raise a more informative- ValueErrorrather than a- TypeError(GH16842)
- to_datetime()now raises a- ValueErrorwhen format includes- %Wor- %Uwithout also including day of the week and calendar year (GH16774)
- Renamed non-functional - indexto- index_colin- read_stata()to improve API consistency (GH16342)
- Bug in - DataFrame.drop()caused boolean labels- Falseand- Trueto be treated as labels 0 and 1 respectively when dropping indices from a numeric index. This will now raise a ValueError (GH16877)
- Restricted DateOffset keyword arguments. Previously, - DateOffsetsubclasses allowed arbitrary keyword arguments which could lead to unexpected behavior. Now, only valid arguments will be accepted. (GH17176).
Deprecations#
- DataFrame.from_csv()and- Series.from_csv()have been deprecated in favor of- read_csv()(GH4191)
- read_excel()has deprecated- sheetnamein favor of- sheet_namefor consistency with- .to_excel()(GH10559).
- read_excel()has deprecated- parse_colsin favor of- usecolsfor consistency with- read_csv()(GH4988)
- read_csv()has deprecated the- tupleize_colsargument. Column tuples will always be converted to a- MultiIndex(GH17060)
- DataFrame.to_csv()has deprecated the- tupleize_colsargument. MultiIndex columns will be always written as rows in the CSV file (GH17060)
- The - convertparameter has been deprecated in the- .take()method, as it was not being respected (GH16948)
- pd.options.html.borderhas been deprecated in favor of- pd.options.display.html.border(GH15793).
- SeriesGroupBy.nth()has deprecated- Truein favor of- 'all'for its kwarg- dropna(GH11038).
- DataFrame.as_blocks()is deprecated, as this is exposing the internal implementation (GH17302)
- pd.TimeGrouperis deprecated in favor of- pandas.Grouper(GH16747)
- cdate_rangehas been deprecated in favor of- bdate_range(), which has gained- weekmaskand- holidaysparameters for building custom frequency date ranges. See the documentation for more details (GH17596)
- passing - categoriesor- orderedkwargs to- Series.astype()is deprecated, in favor of passing a CategoricalDtype (GH17636)
- .get_valueand- .set_valueon- Series,- DataFrame,- Panel,- SparseSeries, and- SparseDataFrameare deprecated in favor of using- .iat[]or- .at[]accessors (GH15269)
- Passing a non-existent column in - .to_excel(..., columns=)is deprecated and will raise a- KeyErrorin the future (GH17295)
- raise_on_errorparameter to- Series.where(),- Series.mask(),- DataFrame.where(),- DataFrame.mask()is deprecated, in favor of- errors=(GH14968)
- Using - DataFrame.rename_axis()and- Series.rename_axis()to alter index or column labels is now deprecated in favor of using- .rename.- rename_axismay still be used to alter the name of the index or columns (GH17833).
- reindex_axis()has been deprecated in favor of- reindex(). See here for more (GH17833).
Series.select and DataFrame.select#
The Series.select() and DataFrame.select() methods are deprecated in favor of using df.loc[labels.map(crit)] (GH12401)
In [72]: df = pd.DataFrame({'A': [1, 2, 3]}, index=['foo', 'bar', 'baz'])
In [3]: df.select(lambda x: x in ['bar', 'baz'])
FutureWarning: select is deprecated and will be removed in a future release. You can use .loc[crit] as a replacement
Out[3]:
     A
bar  2
baz  3
In [73]: df.loc[df.index.map(lambda x: x in ['bar', 'baz'])]
Out[73]: 
     A
bar  2
baz  3
[2 rows x 1 columns]
Series.argmax and Series.argmin#
The behavior of Series.argmax() and Series.argmin() have been deprecated in favor of Series.idxmax() and Series.idxmin(), respectively (GH16830).
For compatibility with NumPy arrays, pd.Series implements argmax and
argmin. Since pandas 0.13.0, argmax has been an alias for
pandas.Series.idxmax(), and argmin has been an alias for
pandas.Series.idxmin(). They return the label of the maximum or minimum,
rather than the position.
We’ve deprecated the current behavior of Series.argmax and
Series.argmin. Using either of these will emit a FutureWarning. Use
Series.idxmax() if you want the label of the maximum. Use
Series.values.argmax() if you want the position of the maximum. Likewise for
the minimum. In a future release Series.argmax and Series.argmin will
return the position of the maximum or minimum.
Removal of prior version deprecations/changes#
- read_excel()has dropped the- has_index_namesparameter (GH10967)
- The - pd.options.display.heightconfiguration has been dropped (GH3663)
- The - pd.options.display.line_widthconfiguration has been dropped (GH2881)
- The - pd.options.display.mpl_styleconfiguration has been dropped (GH12190)
- Indexhas dropped the- .sym_diff()method in favor of- .symmetric_difference()(GH12591)
- Categoricalhas dropped the- .order()and- .sort()methods in favor of- .sort_values()(GH12882)
- eval()and- DataFrame.eval()have changed the default of- inplacefrom- Noneto- False(GH11149)
- The function - get_offset_namehas been dropped in favor of the- .freqstrattribute for an offset (GH11834)
- pandas no longer tests for compatibility with hdf5-files created with pandas < 0.11 (GH17404). 
Performance improvements#
- Improved performance of instantiating - SparseDataFrame(GH16773)
- Series.dtno longer performs frequency inference, yielding a large speedup when accessing the attribute (GH17210)
- Improved performance of - set_categories()by not materializing the values (GH17508)
- Timestamp.microsecondno longer re-computes on attribute access (GH17331)
- Improved performance of the - CategoricalIndexfor data that is already categorical dtype (GH17513)
- Improved performance of - RangeIndex.min()and- RangeIndex.max()by using- RangeIndexproperties to perform the computations (GH17607)
Documentation changes#
Bug fixes#
Conversion#
- Bug in assignment against datetime-like data with - intmay incorrectly convert to datetime-like (GH14145)
- Bug in assignment against - int64data with- np.ndarraywith- float64dtype may keep- int64dtype (GH14001)
- Fixed the return type of - IntervalIndex.is_non_overlapping_monotonicto be a Python- boolfor consistency with similar attributes/methods. Previously returned a- numpy.bool_. (GH17237)
- Bug in - IntervalIndex.is_non_overlapping_monotonicwhen intervals are closed on both sides and overlap at a point (GH16560)
- Bug in - Series.fillna()returns frame when- inplace=Trueand- valueis dict (GH16156)
- Bug in - Timestamp.weekday_namereturning a UTC-based weekday name when localized to a timezone (GH17354)
- Bug in - Timestamp.replacewhen replacing- tzinfoaround DST changes (GH15683)
- Bug in - Timedeltaconstruction and arithmetic that would not propagate the- Overflowexception (GH17367)
- Bug in - astype()converting to object dtype when passed extension type classes (- DatetimeTZDtype,- CategoricalDtype) rather than instances. Now a- TypeErroris raised when a class is passed (GH17780).
- Bug in - to_numeric()in which elements were not always being coerced to numeric when- errors='coerce'(GH17007, GH17125)
- Bug in - DataFrameand- Seriesconstructors where- rangeobjects are converted to- int32dtype on Windows instead of- int64(GH16804)
Indexing#
- When called with a null slice (e.g. - df.iloc[:]), the- .ilocand- .locindexers return a shallow copy of the original object. Previously they returned the original object. (GH13873).
- When called on an unsorted - MultiIndex, the- locindexer now will raise- UnsortedIndexErroronly if proper slicing is used on non-sorted levels (GH16734).
- Fixes regression in 0.20.3 when indexing with a string on a - TimedeltaIndex(GH16896).
- Fixed - TimedeltaIndex.get_loc()handling of- np.timedelta64inputs (GH16909).
- Fix - MultiIndex.sort_index()ordering when- ascendingargument is a list, but not all levels are specified, or are in a different order (GH16934).
- Fixes bug where indexing with - np.infcaused an- OverflowErrorto be raised (GH16957)
- Bug in reindexing on an empty - CategoricalIndex(GH16770)
- Fixes - DataFrame.locfor setting with alignment and tz-aware- DatetimeIndex(GH16889)
- Avoids - IndexErrorwhen passing an Index or Series to- .ilocwith older numpy (GH17193)
- Allow unicode empty strings as placeholders in multilevel columns in Python 2 (GH17099) 
- Bug in - .ilocwhen used with inplace addition or assignment and an int indexer on a- MultiIndexcausing the wrong indexes to be read from and written to (GH17148)
- Bug in - .isin()in which checking membership in empty- Seriesobjects raised an error (GH16991)
- Bug in - CategoricalIndexreindexing in which specified indices containing duplicates were not being respected (GH17323)
- Bug in intersection of - RangeIndexwith negative step (GH17296)
- Bug in - IntervalIndexwhere performing a scalar lookup fails for included right endpoints of non-overlapping monotonic decreasing indexes (GH16417, GH17271)
- Bug in - DataFrame.first_valid_index()and- DataFrame.last_valid_index()when no valid entry (GH17400)
- Bug in - Series.rename()when called with a callable, incorrectly alters the name of the- Series, rather than the name of the- Index. (GH17407)
- Bug in - String.str_get()raises- IndexErrorinstead of inserting NaNs when using a negative index. (GH17704)
IO#
- Bug in - read_hdf()when reading a timezone aware index from- fixedformat HDFStore (GH17618)
- Bug in - read_csv()in which columns were not being thoroughly de-duplicated (GH17060)
- Bug in - read_csv()in which specified column names were not being thoroughly de-duplicated (GH17095)
- Bug in - read_csv()in which non integer values for the header argument generated an unhelpful / unrelated error message (GH16338)
- Bug in - read_csv()in which memory management issues in exception handling, under certain conditions, would cause the interpreter to segfault (GH14696, GH16798).
- Bug in - read_csv()when called with- low_memory=Falsein which a CSV with at least one column > 2GB in size would incorrectly raise a- MemoryError(GH16798).
- Bug in - read_csv()when called with a single-element list- headerwould return a- DataFrameof all NaN values (GH7757)
- Bug in - DataFrame.to_csv()defaulting to ‘ascii’ encoding in Python 3, instead of ‘utf-8’ (GH17097)
- Bug in - read_stata()where value labels could not be read when using an iterator (GH16923)
- Bug in - read_stata()where the index was not set (GH16342)
- Bug in - read_html()where import check fails when run in multiple threads (GH16928)
- Bug in - read_csv()where automatic delimiter detection caused a- TypeErrorto be thrown when a bad line was encountered rather than the correct error message (GH13374)
- Bug in - DataFrame.to_html()with- notebook=Truewhere DataFrames with named indices or non-MultiIndex indices had undesired horizontal or vertical alignment for column or row labels, respectively (GH16792)
- Bug in - DataFrame.to_html()in which there was no validation of the- justifyparameter (GH17527)
- Bug in - HDFStore.select()when reading a contiguous mixed-data table featuring VLArray (GH17021)
- Bug in - to_json()where several conditions (including objects with unprintable symbols, objects with deep recursion, overlong labels) caused segfaults instead of raising the appropriate exception (GH14256)
Plotting#
- Bug in plotting methods using - secondary_yand- fontsizenot setting secondary axis font size (GH12565)
- Bug when plotting - timedeltaand- datetimedtypes on y-axis (GH16953)
- Line plots no longer assume monotonic x data when calculating xlims, they show the entire lines now even for unsorted x data. (GH11310, GH11471) 
- With matplotlib 2.0.0 and above, calculation of x limits for line plots is left to matplotlib, so that its new default settings are applied. (GH15495) 
- Bug in - Series.plot.baror- DataFrame.plot.barwith- ynot respecting user-passed- color(GH16822)
- Bug causing - plotting.parallel_coordinatesto reset the random seed when using random colors (GH17525)
GroupBy/resample/rolling#
- Bug in - DataFrame.resample(...).size()where an empty- DataFramedid not return a- Series(GH14962)
- Bug in - infer_freq()causing indices with 2-day gaps during the working week to be wrongly inferred as business daily (GH16624)
- Bug in - .rolling(...).quantile()which incorrectly used different defaults than- Series.quantile()and- DataFrame.quantile()(GH9413, GH16211)
- Bug in - groupby.transform()that would coerce boolean dtypes back to float (GH16875)
- Bug in - Series.resample(...).apply()where an empty- Seriesmodified the source index and did not return the name of a- Series(GH14313)
- Bug in - .rolling(...).apply(...)with a- DataFramewith a- DatetimeIndex, a- windowof a timedelta-convertible and- min_periods >= 1(GH15305)
- Bug in - DataFrame.groupbywhere index and column keys were not recognized correctly when the number of keys equaled the number of elements on the groupby axis (GH16859)
- Bug in - groupby.nunique()with- TimeGrouperwhich cannot handle- NaTcorrectly (GH17575)
- Bug in - DataFrame.groupbywhere a single level selection from a- MultiIndexunexpectedly sorts (GH17537)
- Bug in - DataFrame.groupbywhere spurious warning is raised when- Grouperobject is used to override ambiguous column name (GH17383)
- Bug in - TimeGrouperdiffers when passes as a list and as a scalar (GH17530)
Sparse#
- Bug in - SparseSeriesraises- AttributeErrorwhen a dictionary is passed in as data (GH16905)
- Bug in - SparseDataFrame.fillna()not filling all NaNs when frame was instantiated from SciPy sparse matrix (GH16112)
- Bug in - SparseSeries.unstack()and- SparseDataFrame.stack()(GH16614, GH15045)
- Bug in - make_sparse()treating two numeric/boolean data, which have same bits, as same when array- dtypeis- object(GH17574)
- SparseArray.all()and- SparseArray.any()are now implemented to handle- SparseArray, these were used but not implemented (GH17570)
Reshaping#
- Joining/Merging with a non unique - PeriodIndexraised a- TypeError(GH16871)
- Bug in - crosstab()where non-aligned series of integers were casted to float (GH17005)
- Bug in merging with categorical dtypes with datetimelikes incorrectly raised a - TypeError(GH16900)
- Bug when using - isin()on a large object series and large comparison array (GH16012)
- Fixes regression from 0.20, - Series.aggregate()and- DataFrame.aggregate()allow dictionaries as return values again (GH16741)
- Fixes dtype of result with integer dtype input, from - pivot_table()when called with- margins=True(GH17013)
- Bug in - crosstab()where passing two- Serieswith the same name raised a- KeyError(GH13279)
- Series.argmin(),- Series.argmax(), and their counterparts on- DataFrameand groupby objects work correctly with floating point data that contains infinite values (GH13595).
- Bug in - unique()where checking a tuple of strings raised a- TypeError(GH17108)
- Bug in - concat()where order of result index was unpredictable if it contained non-comparable elements (GH17344)
- Fixes regression when sorting by multiple columns on a - datetime64dtype- Serieswith- NaTvalues (GH16836)
- Bug in - pivot_table()where the result’s columns did not preserve the categorical dtype of- columnswhen- dropnawas- False(GH17842)
- Bug in - DataFrame.drop_duplicateswhere dropping with non-unique column names raised a- ValueError(GH17836)
- Bug in - unstack()which, when called on a list of levels, would discard the- fillnaargument (GH13971)
- Bug in the alignment of - rangeobjects and other list-likes with- DataFrameleading to operations being performed row-wise instead of column-wise (GH17901)
Numeric#
- Bug in - .clip()with- axis=1and a list-like for- thresholdis passed; previously this raised- ValueError(GH15390)
- Series.clip()and- DataFrame.clip()now treat NA values for upper and lower arguments as- Noneinstead of raising- ValueError(GH17276).
Categorical#
- Bug in - Series.isin()when called with a categorical (GH16639)
- Bug in the categorical constructor with empty values and categories causing the - .categoriesto be an empty- Float64Indexrather than an empty- Indexwith object dtype (GH17248)
- Bug in categorical operations with Series.cat not preserving the original Series’ name (GH17509) 
- Bug in - DataFrame.merge()failing for categorical columns with boolean/int data types (GH17187)
- Bug in constructing a - Categorical/- CategoricalDtypewhen the specified- categoriesare of categorical type (GH17884).
PyPy#
- Compatibility with PyPy in - read_csv()with- usecols=[<unsorted ints>]and- read_json()(GH17351)
- Split tests into cases for CPython and PyPy where needed, which highlights the fragility of index matching with - float('nan'),- np.nanand- NAT(GH17351)
- Fix - DataFrame.memory_usage()to support PyPy. Objects on PyPy do not have a fixed size, so an approximation is used instead (GH17228)
Other#
Contributors#
A total of 206 people contributed patches to this release. People with a “+” by their names contributed a patch for the first time.
- 3553x + 
- Aaron Barber 
- Adam Gleave + 
- Adam Smith + 
- AdamShamlian + 
- Adrian Liaw + 
- Alan Velasco + 
- Alan Yee + 
- Alex B + 
- Alex Lubbock + 
- Alex Marchenko + 
- Alex Rychyk + 
- Amol K + 
- Andreas Winkler 
- Andrew + 
- Andrew 亮 
- André Jonasson + 
- Becky Sweger 
- Berkay + 
- Bob Haffner + 
- Bran Yang 
- Brian Tu + 
- Brock Mendel + 
- Carol Willing + 
- Carter Green + 
- Chankey Pathak + 
- Chris 
- Chris Billington 
- Chris Filo Gorgolewski + 
- Chris Kerr 
- Chris M + 
- Chris Mazzullo + 
- Christian Prinoth 
- Christian Stade-Schuldt 
- Christoph Moehl + 
- DSM 
- Daniel Chen + 
- Daniel Grady 
- Daniel Himmelstein 
- Dave Willmer 
- David Cook 
- David Gwynne 
- David Read + 
- Dillon Niederhut + 
- Douglas Rudd 
- Eric Stein + 
- Eric Wieser + 
- Erik Fredriksen 
- Florian Wilhelm + 
- Floris Kint + 
- Forbidden Donut 
- Gabe F + 
- Giftlin + 
- Giftlin Rajaiah + 
- Giulio Pepe + 
- Guilherme Beltramini 
- Guillem Borrell + 
- Hanmin Qin + 
- Hendrik Makait + 
- Hugues Valois 
- Hussain Tamboli + 
- Iva Miholic + 
- Jan Novotný + 
- Jan Rudolph 
- Jean Helie + 
- Jean-Baptiste Schiratti + 
- Jean-Mathieu Deschenes 
- Jeff Knupp + 
- Jeff Reback 
- Jeff Tratner 
- JennaVergeynst 
- JimStearns206 
- Joel Nothman 
- John W. O’Brien 
- Jon Crall + 
- Jon Mease 
- Jonathan J. Helmus + 
- Joris Van den Bossche 
- JosephWagner 
- Juarez Bochi 
- Julian Kuhlmann + 
- Karel De Brabandere 
- Kassandra Keeton + 
- Keiron Pizzey + 
- Keith Webber 
- Kernc 
- Kevin Sheppard 
- Kirk Hansen + 
- Licht Takeuchi + 
- Lucas Kushner + 
- Mahdi Ben Jelloul + 
- Makarov Andrey + 
- Malgorzata Turzanska + 
- Marc Garcia + 
- Margaret Sy + 
- MarsGuy + 
- Matt Bark + 
- Matthew Roeschke 
- Matti Picus 
- Mehmet Ali “Mali” Akmanalp 
- Michael Gasvoda + 
- Michael Penkov + 
- Milo + 
- Morgan Stuart + 
- Morgan243 + 
- Nathan Ford + 
- Nick Eubank 
- Nick Garvey + 
- Oleg Shteynbuk + 
- P-Tillmann + 
- Pankaj Pandey 
- Patrick Luo 
- Patrick O’Melveny 
- Paul Reidy + 
- Paula + 
- Peter Quackenbush 
- Peter Yanovich + 
- Phillip Cloud 
- Pierre Haessig 
- Pietro Battiston 
- Pradyumna Reddy Chinthala 
- Prasanjit Prakash 
- RobinFiveWords 
- Ryan Hendrickson 
- Sam Foo 
- Sangwoong Yoon + 
- Simon Gibbons + 
- SimonBaron 
- Steven Cutting + 
- Sudeep + 
- Sylvia + 
- T N + 
- Telt 
- Thomas A Caswell 
- Tim Swast + 
- Tom Augspurger 
- Tong SHEN 
- Tuan + 
- Utkarsh Upadhyay + 
- Vincent La + 
- Vivek + 
- WANG Aiyong 
- WBare 
- Wes McKinney 
- XF + 
- Yi Liu + 
- Yosuke Nakabayashi + 
- aaron315 + 
- abarber4gh + 
- aernlund + 
- agustín méndez + 
- andymaheshw + 
- ante328 + 
- aviolov + 
- bpraggastis 
- cbertinato + 
- cclauss + 
- chernrick 
- chris-b1 
- dkamm + 
- dwkenefick 
- economy 
- faic + 
- fding253 + 
- gfyoung 
- guygoldberg + 
- hhuuggoo + 
- huashuai + 
- ian 
- iulia + 
- jaredsnyder 
- jbrockmendel + 
- jdeschenes 
- jebob + 
- jschendel + 
- keitakurita 
- kernc + 
- kiwirob + 
- kjford 
- linebp 
- lloydkirk 
- louispotok + 
- majiang + 
- manikbhandari + 
- matthiashuschle + 
- mattip 
- maxwasserman + 
- mjlove12 + 
- nmartensen + 
- pandas-docs-bot + 
- parchd-1 + 
- philipphanemann + 
- rdk1024 + 
- reidy-p + 
- ri938 
- ruiann + 
- rvernica + 
- s-weigand + 
- scotthavard92 + 
- skwbc + 
- step4me + 
- tobycheese + 
- topper-123 + 
- tsdlovell 
- ysau + 
- zzgao +