pandas.core.groupby.DataFrameGroupBy.diff#
- DataFrameGroupBy.diff(periods=1, axis=_NoDefault.no_default)[source]#
First discrete difference of element.
Calculates the difference of each element compared with another element in the group (default is element in previous row).
- Parameters:
- periodsint, default 1
Periods to shift for calculating difference, accepts negative values.
- axisaxis to shift, default 0
Take difference over rows (0) or columns (1).
Deprecated since version 2.1.0: For axis=1, operate on the underlying object instead. Otherwise the axis keyword is not necessary.
- Returns:
- Series or DataFrame
First differences.
See also
Series.groupby
Apply a function groupby to a Series.
DataFrame.groupby
Apply a function groupby to each row or column of a DataFrame.
Examples
For SeriesGroupBy:
>>> lst = ['a', 'a', 'a', 'b', 'b', 'b'] >>> ser = pd.Series([7, 2, 8, 4, 3, 3], index=lst) >>> ser a 7 a 2 a 8 b 4 b 3 b 3 dtype: int64 >>> ser.groupby(level=0).diff() a NaN a -5.0 a 6.0 b NaN b -1.0 b 0.0 dtype: float64
For DataFrameGroupBy:
>>> data = {'a': [1, 3, 5, 7, 7, 8, 3], 'b': [1, 4, 8, 4, 4, 2, 1]} >>> df = pd.DataFrame(data, index=['dog', 'dog', 'dog', ... 'mouse', 'mouse', 'mouse', 'mouse']) >>> df a b dog 1 1 dog 3 4 dog 5 8 mouse 7 4 mouse 7 4 mouse 8 2 mouse 3 1 >>> df.groupby(level=0).diff() a b dog NaN NaN dog 2.0 3.0 dog 2.0 4.0 mouse NaN NaN mouse 0.0 0.0 mouse 1.0 -2.0 mouse -5.0 -1.0