pandas.core.groupby.SeriesGroupBy.fillna#
- SeriesGroupBy.fillna(value=None, method=None, axis=_NoDefault.no_default, inplace=False, limit=None, downcast=_NoDefault.no_default)[source]#
Fill NA/NaN values using the specified method within groups.
- Parameters:
- valuescalar, dict, Series, or DataFrame
Value to use to fill holes (e.g. 0), alternately a dict/Series/DataFrame of values specifying which value to use for each index (for a Series) or column (for a DataFrame). Values not in the dict/Series/DataFrame will not be filled. This value cannot be a list. Users wanting to use the
value
argument and notmethod
should preferSeries.fillna()
as this will produce the same result and be more performant.- method{{‘bfill’, ‘ffill’, None}}, default None
Method to use for filling holes.
'ffill'
will propagate the last valid observation forward within a group.'bfill'
will use next valid observation to fill the gap.Deprecated since version 2.1.0: Use obj.ffill or obj.bfill instead.
- axis{0 or ‘index’, 1 or ‘columns’}
Unused, only for compatibility with
DataFrameGroupBy.fillna()
.Deprecated since version 2.1.0: For axis=1, operate on the underlying object instead. Otherwise the axis keyword is not necessary.
- inplacebool, default False
Broken. Do not set to True.
- limitint, default None
If method is specified, this is the maximum number of consecutive NaN values to forward/backward fill within a group. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partially filled. If method is not specified, this is the maximum number of entries along the entire axis where NaNs will be filled. Must be greater than 0 if not None.
- downcastdict, default is None
A dict of item->dtype of what to downcast if possible, or the string ‘infer’ which will try to downcast to an appropriate equal type (e.g. float64 to int64 if possible).
Deprecated since version 2.1.0.
- Returns:
- Series
Object with missing values filled within groups.
Examples
For SeriesGroupBy:
>>> lst = ['cat', 'cat', 'cat', 'mouse', 'mouse'] >>> ser = pd.Series([1, None, None, 2, None], index=lst) >>> ser cat 1.0 cat NaN cat NaN mouse 2.0 mouse NaN dtype: float64 >>> ser.groupby(level=0).fillna(0, limit=1) cat 1.0 cat 0.0 cat NaN mouse 2.0 mouse 0.0 dtype: float64