pandas.core.groupby.DataFrameGroupBy.skew#
- DataFrameGroupBy.skew(axis=_NoDefault.no_default, skipna=True, numeric_only=False, **kwargs)[source]#
Return unbiased skew within groups.
Normalized by N-1.
- Parameters:
- axis{0 or ‘index’, 1 or ‘columns’, None}, default 0
Axis for the function to be applied on.
Specifying
axis=None
will apply the aggregation across both axes.New in version 2.0.0.
Deprecated since version 2.1.0: For axis=1, operate on the underlying object instead. Otherwise the axis keyword is not necessary.
- skipnabool, default True
Exclude NA/null values when computing the result.
- numeric_onlybool, default False
Include only float, int, boolean columns.
- **kwargs
Additional keyword arguments to be passed to the function.
- Returns:
- DataFrame
See also
DataFrame.skew
Return unbiased skew over requested axis.
Examples
>>> arrays = [['falcon', 'parrot', 'cockatoo', 'kiwi', ... 'lion', 'monkey', 'rabbit'], ... ['bird', 'bird', 'bird', 'bird', ... 'mammal', 'mammal', 'mammal']] >>> index = pd.MultiIndex.from_arrays(arrays, names=('name', 'class')) >>> df = pd.DataFrame({'max_speed': [389.0, 24.0, 70.0, np.nan, ... 80.5, 21.5, 15.0]}, ... index=index) >>> df max_speed name class falcon bird 389.0 parrot bird 24.0 cockatoo bird 70.0 kiwi bird NaN lion mammal 80.5 monkey mammal 21.5 rabbit mammal 15.0 >>> gb = df.groupby(["class"]) >>> gb.skew() max_speed class bird 1.628296 mammal 1.669046 >>> gb.skew(skipna=False) max_speed class bird NaN mammal 1.669046