pandas.DataFrame.any#
- DataFrame.any(*, axis=0, bool_only=False, skipna=True, **kwargs)[source]#
- Return whether any element is True, potentially over an axis. - Returns False unless there is at least one element within a series or along a Dataframe axis that is True or equivalent (e.g. non-zero or non-empty). - Parameters:
- axis{0 or ‘index’, 1 or ‘columns’, None}, default 0
- Indicate which axis or axes should be reduced. For Series this parameter is unused and defaults to 0. - 0 / ‘index’ : reduce the index, return a Series whose index is the original column labels. 
- 1 / ‘columns’ : reduce the columns, return a Series whose index is the original index. 
- None : reduce all axes, return a scalar. 
 
- bool_onlybool, default False
- Include only boolean columns. Not implemented for Series. 
- skipnabool, default True
- Exclude NA/null values. If the entire row/column is NA and skipna is True, then the result will be False, as for an empty row/column. If skipna is False, then NA are treated as True, because these are not equal to zero. 
- **kwargsany, default None
- Additional keywords have no effect but might be accepted for compatibility with NumPy. 
 
- Returns:
- Series or DataFrame
- If level is specified, then, DataFrame is returned; otherwise, Series is returned. 
 
 - See also - numpy.any
- Numpy version of this method. 
- Series.any
- Return whether any element is True. 
- Series.all
- Return whether all elements are True. 
- DataFrame.any
- Return whether any element is True over requested axis. 
- DataFrame.all
- Return whether all elements are True over requested axis. 
 - Examples - Series - For Series input, the output is a scalar indicating whether any element is True. - >>> pd.Series([False, False]).any() False >>> pd.Series([True, False]).any() True >>> pd.Series([], dtype="float64").any() False >>> pd.Series([np.nan]).any() False >>> pd.Series([np.nan]).any(skipna=False) True - DataFrame - Whether each column contains at least one True element (the default). - >>> df = pd.DataFrame({"A": [1, 2], "B": [0, 2], "C": [0, 0]}) >>> df A B C 0 1 0 0 1 2 2 0 - >>> df.any() A True B True C False dtype: bool - Aggregating over the columns. - >>> df = pd.DataFrame({"A": [True, False], "B": [1, 2]}) >>> df A B 0 True 1 1 False 2 - >>> df.any(axis='columns') 0 True 1 True dtype: bool - >>> df = pd.DataFrame({"A": [True, False], "B": [1, 0]}) >>> df A B 0 True 1 1 False 0 - >>> df.any(axis='columns') 0 True 1 False dtype: bool - Aggregating over the entire DataFrame with - axis=None.- >>> df.any(axis=None) True - any for an empty DataFrame is an empty Series. - >>> pd.DataFrame([]).any() Series([], dtype: bool)